十位一线专家分享Spark现状与未来----峰会摘录
CSDN大数据技术:
部分摘录:
加州大学伯克利分校AMP实验室博士Matei Zaharia:Spark的现状和未来 ----(Matei Zaharia是加州大学伯克利分校AMP实验室博士研究生,Databricks公司的联合创始人兼现任CTO。Zaharia致力于于大规模数据密集型计算的系统和算法。研究项目包括:Spark、Shark、Multi-Resource Fairness、MapReduce Scheduling、SNAP Sequence Aligner)
Spark是发源于美国加州大学伯克利分校AMPLab的集群计算平台,立足于内存计算,从多迭代批量处理出发,兼收并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。
Project History:
Spark started as research project in 2009
Open sourced in 2010
Growing community since
Entered Apache lncubator in June 2013
Release Growth:
Spark 0.6 ---- Java API、Maven、standalone mode ,17 contributors
Spark 0.7 ---- Python API、Spark Streaming ,31 contributors
Spark 0.8 ---- YARN、MLlib、monitoring UI ,67 contributors ---- High availability for standalone mode (0.8.1)
Spark 0.9 ---- Scala 2.10 support、Configuration system、Spark Streaming improvement
Projects Bulit on Spark:
Shark(SQL)、Spark Streaming(real-time)、GraphX(graph)、MLbase(machine learning)

Databricks公司CEO Ion Stoica:将数据转化为价值 ----(Ion Stoica是UC Berkeley计算机教授,AMPLab共同创始人,弹性P2P协议Chord、集群内存计算框架Spark、集群资源管理平台Mesos都出自他)
Turning Data into Value
What do We Need?
interactive queries(交互式查询) ---- enable faster decision
Queries on streaming data(基于数据流的查询) ---- enable decisions on real-time data ---- Eg:fraud detection(欺诈检测)、detect DDoS attacks(检测DDoS攻击)
Sophisticated data processing(复杂的数据处理) ---- enable "better" decision

Our Goal:
Support batch、Streaming、and interactive computation(批处理、流处理、交互计算)...... in a unified framework
Easy to develop sophisticated algorithms(e.g..,graph,ML algos)

Big Data Challenge:Time 、Money 、Answer Quality

处理速度与精确性的权衡:反比

Tim Tully :集成Spark/Shark到雅虎数据分析平台
Sharethrough数据专家Ryan Weald:产品化Spark流媒体
Keys to Fault Tolerance:
Receive fault tolerance ---- Use Actors with supervisor、Use self healing connection pools
Monitoring job progress
RDDs:弹性分布式数据集
Low latency & Scale (低延时&大规模)
iterative and Interactive computation (迭代式和交互式计算)
Databricks创始人Patrick Wendell:理解Spark应用程序的性能 ---- (专注于大规模数据密集型计算。致力于Spark的性能基准测试,同时是spark-perf的合著者。此次峰会他就Spark 深度挖掘、UI概述和测试设备、普通性能和错误)
Summary of Components:
Tasks:Fundamental unit of work
Stage:Set of tasks that run in parallel
DAG:Logical graph of RDD operations
RDD:Parallel dataset with partitions
Demo of perf UI ---- Problems:
Scheduling and launching tasks
Execution of tasks
Writing data between stages
Collecting results
Databricks客户端解决方案主管Pat McDonough:用Spark并行程序设计 ---- (从Spark的性能、组件等方面全面介绍Spark的各种优异性能)




UC Berkeley博士Tathagata Das:用Spark流实时大数据处理 ---- (什么是Spark流,为什么选择Spark流,其性能和容错机制)



DStreams+RDDs=Power
Fault-tolerance:
Batches of input data are replicated in memory for fault-tolerance
Data lost due to worker failure,can be recomputed from replicated input data
All transformations are fault-tolerant,and exactly-once transformations
Higher throughput than Storm:
Spark Streaming:670K records/sec/node
Storm:115K records/sec/node
Fast Fault Recovery:
Recovers from faults/stragglers within 1 sec
Spark 0.9 in Jan 2014 ---- out of alpha
Automated master fault recovery
Performance optimizations
Web UI,and better monitoring capabilities
Cluster Manager UI ---- Standalone mode:<master>:8080
Executor Logs ---- Stored by cluster manager on each worker
Spark Driver Logs ---- Spark initializes a log4j when created ,Include log4j.properties file on the classpath
Application Web UI ---- http://spark-application-host:4040 ---- For executor / task / stage / memory status,etc
十位一线专家分享Spark现状与未来----峰会摘录的更多相关文章
- 【阿里云IoT+YF3300】1.时代大背景下的阿里云IoT物联网的现状和未来
“未来十到二十年,大家基本已经形成了一个共识,那便是新格局的奠定将由 AI 和物联网技术来支撑.放眼国内,在这些互联网巨头之中,未来真正成为竞争对手厮杀的,阿里和华为是首当其冲,在这两个领域双方分别暗 ...
- 【转载】 第四范式涂威威:AutoML技术现状与未来展望
原文地址: https://www.jiqizhixin.com/articles/2018-07-12-17 -------------------------------------------- ...
- 第四范式涂威威:AutoML技术现状与未来展望
以下内容是对AutoML技术现状与未来展望讲座的总结. 1.机器学习定义 <西瓜书>中的直观定义是:利用经验来改善系统的性能.(这里的经验一般是指数据) Mitchell在<Mach ...
- AutoML技术现状与未来展望
以下内容是对AutoML技术现状与未来展望讲座的总结. 1.机器学习定义 <西瓜书>中的直观定义是:利用经验来改善系统的性能.(这里的经验一般是指数据) Mitchell在<Mach ...
- (函数即服务)Faas的现状与未来
刚看到jolestar一位从法律转行程序员的前辈写了一篇Faas现状与未来的文章,里面很多观点都很有启发,或许正如他说的那样,由于Faas能较好的解决资源利用率和开发效率问题,2018年Faas将变得 ...
- 【转载】 AutoML技术现状与未来展望
原文地址: https://www.cnblogs.com/marsggbo/p/9309520.html ---------------------------------------------- ...
- 一站式机器学习平台TI-ONE是什么?——云+未来峰会开发者专场回顾
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 背景:5月23-24日,以“焕启”为主题的腾讯“云+未来”峰会在广州召开,广东省各级政府机构领导.海内外业内学术专家.行业大咖及技术大牛等在 ...
- 新时代运维重器 Tencent Hub 最佳实践——云+未来峰会开发者专场回顾
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 演讲者:邹辉 腾讯云 PaaS 产品总监 背景:5月23-24日,以"焕启"为主题的腾讯"云+未来" ...
- 万物智联,腾讯云 IoT 边缘计算揭秘——云+未来峰会开发者专场回顾
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 背景:现在是万物互联的时代,智能穿戴设备,智能家居,无人商业,改变了我们的生活方式.预计到2021年,全球物联网设数将达到150亿,超过手机 ...
随机推荐
- request-log-analyzer日志分析
(这些文章都是从我的个人主页上粘贴过来的,大家也可以访问我的主页 www.iwangzheng.com) 日志分析是常见的工作,方法如下: 使用工具:request-log-analyzer安装:$ ...
- HDU 1875 畅通工程再续 (prim最小生成树)
B - 畅通工程再续 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit S ...
- codeforces A. Group of Students 解题报告
题目链接:http://codeforces.com/problemset/problem/357/A 题目意思:将一堆人分成两组:beginners 和 intermediate coders .每 ...
- Light OJ 1393 Crazy Calendar (尼姆博弈)
C - Crazy Calendar Time Limit:4000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Su ...
- nodeJS文件路径总结
文件夹目录F:* test1* tes2* test3* test4* a.html*//例句fs.readFile('../../../a.html', function (err, html) { ...
- fedora yum 使用代理的方法
配置yum: 编辑/etc/yum.conf添加下列一行: proxy=http://domain/user:passwd@<proxy ip>:80 <proxy ip>:代 ...
- eclipse 优化提速
1.windows–>perferences–>general–>startup and shutdown关掉没用的启动项: WTP :一个跟myeclipse差不多的东西,主要差别 ...
- Cookie的使用与实现记住用户名案例
学习web开发,使用Cookie是不可避免的,个人感觉Cookie的使用和ASP.NET中的Session非常像,只不过Cookie是保存在客户端,而Session是在服务器端,两者都以记录信息为目的 ...
- hrbustoj 1073:病毒(并查集,入门题)
病毒Time Limit: 1000 MS Memory Limit: 65536 KTotal Submit: 719(185 users) Total Accepted: 247(163 user ...
- oracle中merge的详解
Oracle在9i引入了merge命令, 通过这个merge你能够在一个SQL语句中对一个表同时执行inserts和updates操作. 当然是update还是insert是依据于你的指定的条件判断的 ...