1268. Little Chu

Time limit: 0.25 second
Memory limit: 64 MB
The favorite occupation of Little Chu is to sleep. Strictly speaking, he is busy with nothing but sleeping. Sometimes he wakes up and than the mankind makes some Great Discovery. For the first time Little Chu woke up K days after his birth. For the second time he woke up K2 after his birth. For the third time — K3 days after his birth. This rule still holds true.
Each time whem Little Chu wakes up he looks at the calendar and remembers what day of week is today. They say that if the day of week will be repeated, than Litle Chu will start crying and his tears will flood the world.
Your task is to make the largest number of the Great Discoveries and maximally to delay the doomsday. Determine when should Little Chu be awaken for the first time if it is known that he can’t sleep more than one week after his birth.

Input

The first line contains integer T (1 ≤ T ≤ 6553) — the number of tests. Each of the next T lines contains integer N (2 < N < 65536) — the number of days in the week. N is prime.

Output

K for each input test.

Sample

input output
4
3
5
7
11
2
3
5
8
Problem Author: Pavel Atnashev
Problem Source: Ural State University championship, October 25, 2003
Difficulty: 805
 
题意:给出m,找出一个k是的k^1 k^2 k^3...k^x mod m 后各不相同
分析:
如果发现有
k^t = k (mod m)
k^(t-1) = 1(mod m)
换个形式
q^t=1(mod m)
因为m是质数,根据xx定理,有 q^(m-1) = 1(mod m)
所以,t跟定有 t%(m-1) == 0
因为t < m-1,且t%(m-1) == 0
那是不是我们只用枚举m-1的因数?
太多了。
发现t至少整除(m-1)/pi中的一个。
q^t = 1(mod m)
q^(m-1) = 1(mod m)
显然q^((m-1)/pi) = 1(mod m)
所以只需检验是否存在一个pi使q^((m-1)/pi) = 1(mod m)
检验一个数的复杂度降至(m-1)的质因数个数。
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name)
{
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
bool Visit[N];
int Prime[N], Tot;
int n; inline void GetPrime()
{
For(i, , N - )
{
if(!Visit[i]) Prime[++Tot] = i;
For(j, , Tot - )
{
if(i * Prime[j] > N - ) break;
Visit[i * Prime[j]] = ;
if(!(i % Prime[j])) break;
}
}
} inline void Solve(); inline void Input()
{
GetPrime();
int TestNumber;
scanf("%d", &TestNumber);
while(TestNumber--)
{
scanf("%d", &n);
Solve();
}
} inline int Power(int y, int Times)
{
LL Ret = , x = 1LL * y;
while(Times)
{
if(Times & ) Ret = (Ret * x) % n;
x = (x * x) % n, Times >>= ;
}
return Ret;
} inline void Solve()
{
static int Arr[N], Len;
Len = ;
int Tmp = n - ;
For(i, , Tot)
{
if(Tmp < Prime[i]) break;
if(!(Tmp % Prime[i]))
{
Arr[++Len] = Prime[i];
while(!(Tmp % Prime[i]))
Tmp /= Prime[i];
}
}
if(Tmp > ) Arr[++Len] = Tmp; Ford(Ans, n - , )
{
bool Flag = ;
For(i, , Len)
if(Power(Ans, (n - ) / Arr[i]) == )
{
Flag = ;
break;
}
if(!Flag)
{
printf("%d\n", Ans);
break;
}
}
} int main()
{
#ifndef ONLINE_JUDGE
SetIO("D");
#endif
Input();
//Solve();
return ;
}

ural 1268. Little Chu的更多相关文章

  1. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  2. 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome

    题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...

  3. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  4. ural 2073. Log Files

    2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...

  5. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  6. ural 2069. Hard Rock

    2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...

  7. ural 2068. Game of Nuts

    2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...

  8. ural 2067. Friends and Berries

    2067. Friends and Berries Time limit: 2.0 secondMemory limit: 64 MB There is a group of n children. ...

  9. ural 2066. Simple Expression

    2066. Simple Expression Time limit: 1.0 secondMemory limit: 64 MB You probably know that Alex is a v ...

随机推荐

  1. Unity游戏开发之“屏幕截图”

    原地址:http://sygame.lofter.com/post/117105_791680 在unity游戏开发中,可能会遇到在游戏中截屏的效果.这儿提供两种截屏方法.(方法二提供显示截图缩略图代 ...

  2. Can't connect to local MySQL Server throught socket '/var/run/mysqld/mysqld.sock'(2)

    www.iwangzheng.com 由于之前调整了/etc/mysql/my.cnf试图修复数据库不能存中文的问题,这个问题没解决,以至于数据库连接不上了. tail -f /var/log/mys ...

  3. 学号160809212姓名田京诚C语言程序设计实验2选择结构程序设计

    编写一个C程序,输入3个数,并按由大到小的顺序输出. 1 #include <stdio.h> void main(){ int a,b,c,t; printf("请输入三个整数 ...

  4. ubuntu14.04安装OpenVirteX

    官网链接: http://ovx.onlab.us/getting-started/installation/ step1: System requirements: Recommended 4 Co ...

  5. 【GoLang】GoLang 微服务、开源库等参考资料

    参考资料: GoLang书籍: https://github.com/dariubs/GoBooksGo名库: https://github.com/Unknwon/go-rock-libraries ...

  6. 尖刀出鞘的display常用属性及css盒模型深入研究

    一:diplay:inline-block 含义:指元素创建了一个行级的块级元素,该元素内部(内容)被格式化成一个块级元素,同时元素本身则被格式化成一个行内元素.更简单的说就是说inline-bloc ...

  7. Kmin

    Kmin of Array [本文链接] http://www.cnblogs.com/hellogiser/p/kmin-of-array.html [代码]  C++ Code  12345678 ...

  8. C#模拟百度登录

    目录: 1.fiddler解析百度登录地址 2.处理传入参数 1.fiddler解析百度登录地址 因工作需要,所以研究了下百度的登陆.首先打开https://passport.baidu.com/v2 ...

  9. iOS国际化(Xcode5)

    如何将你的app内的语言可以根据系统语言切换而切换呢?这是本篇所要解决的问题.废话先不说,上软硬件环境: 硬件:Macbook Pro 软件:Xcode 5.1 代码:https://github.c ...

  10. ubuntu下java环境变量配置

    转自:http://blog.csdn.net/tenpage/article/details/7215810 如果是配置java环境,请参照这篇,更简单:在Ubuntu 12.04 LTS上安装JD ...