1268. Little Chu

Time limit: 0.25 second
Memory limit: 64 MB
The favorite occupation of Little Chu is to sleep. Strictly speaking, he is busy with nothing but sleeping. Sometimes he wakes up and than the mankind makes some Great Discovery. For the first time Little Chu woke up K days after his birth. For the second time he woke up K2 after his birth. For the third time — K3 days after his birth. This rule still holds true.
Each time whem Little Chu wakes up he looks at the calendar and remembers what day of week is today. They say that if the day of week will be repeated, than Litle Chu will start crying and his tears will flood the world.
Your task is to make the largest number of the Great Discoveries and maximally to delay the doomsday. Determine when should Little Chu be awaken for the first time if it is known that he can’t sleep more than one week after his birth.

Input

The first line contains integer T (1 ≤ T ≤ 6553) — the number of tests. Each of the next T lines contains integer N (2 < N < 65536) — the number of days in the week. N is prime.

Output

K for each input test.

Sample

input output
4
3
5
7
11
2
3
5
8
Problem Author: Pavel Atnashev
Problem Source: Ural State University championship, October 25, 2003
Difficulty: 805
 
题意:给出m,找出一个k是的k^1 k^2 k^3...k^x mod m 后各不相同
分析:
如果发现有
k^t = k (mod m)
k^(t-1) = 1(mod m)
换个形式
q^t=1(mod m)
因为m是质数,根据xx定理,有 q^(m-1) = 1(mod m)
所以,t跟定有 t%(m-1) == 0
因为t < m-1,且t%(m-1) == 0
那是不是我们只用枚举m-1的因数?
太多了。
发现t至少整除(m-1)/pi中的一个。
q^t = 1(mod m)
q^(m-1) = 1(mod m)
显然q^((m-1)/pi) = 1(mod m)
所以只需检验是否存在一个pi使q^((m-1)/pi) = 1(mod m)
检验一个数的复杂度降至(m-1)的质因数个数。
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name)
{
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
bool Visit[N];
int Prime[N], Tot;
int n; inline void GetPrime()
{
For(i, , N - )
{
if(!Visit[i]) Prime[++Tot] = i;
For(j, , Tot - )
{
if(i * Prime[j] > N - ) break;
Visit[i * Prime[j]] = ;
if(!(i % Prime[j])) break;
}
}
} inline void Solve(); inline void Input()
{
GetPrime();
int TestNumber;
scanf("%d", &TestNumber);
while(TestNumber--)
{
scanf("%d", &n);
Solve();
}
} inline int Power(int y, int Times)
{
LL Ret = , x = 1LL * y;
while(Times)
{
if(Times & ) Ret = (Ret * x) % n;
x = (x * x) % n, Times >>= ;
}
return Ret;
} inline void Solve()
{
static int Arr[N], Len;
Len = ;
int Tmp = n - ;
For(i, , Tot)
{
if(Tmp < Prime[i]) break;
if(!(Tmp % Prime[i]))
{
Arr[++Len] = Prime[i];
while(!(Tmp % Prime[i]))
Tmp /= Prime[i];
}
}
if(Tmp > ) Arr[++Len] = Tmp; Ford(Ans, n - , )
{
bool Flag = ;
For(i, , Len)
if(Power(Ans, (n - ) / Arr[i]) == )
{
Flag = ;
break;
}
if(!Flag)
{
printf("%d\n", Ans);
break;
}
}
} int main()
{
#ifndef ONLINE_JUDGE
SetIO("D");
#endif
Input();
//Solve();
return ;
}

ural 1268. Little Chu的更多相关文章

  1. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  2. 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome

    题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...

  3. ural 2071. Juice Cocktails

    2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...

  4. ural 2073. Log Files

    2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...

  5. ural 2070. Interesting Numbers

    2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...

  6. ural 2069. Hard Rock

    2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...

  7. ural 2068. Game of Nuts

    2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...

  8. ural 2067. Friends and Berries

    2067. Friends and Berries Time limit: 2.0 secondMemory limit: 64 MB There is a group of n children. ...

  9. ural 2066. Simple Expression

    2066. Simple Expression Time limit: 1.0 secondMemory limit: 64 MB You probably know that Alex is a v ...

随机推荐

  1. php面试题之四——PHP面向对象(基础部分)

    四.PHP面向对象 1. 写出 php 的 public.protected.private 三种访问控制模式的区别(新浪网技术部) public:公有,任何地方都可以访问 protected:继承, ...

  2. HNU 12847 Dwarf Tower(最短路+队列优化)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12847 解题报告:有n样物品,编号从1到n第i样物品可以通过金 ...

  3. Android使用OkHttp实现带进度的上传下载

    先贴上MainActivity.java package cn.edu.zafu.sample; import android.os.Bundle; import android.support.v7 ...

  4. Controller之间传递数据:Block传值

    http://itjoy.org/?p=420 前边我们介绍过属性传值和协议传值,这里介绍一下块传值,块类似于C中的函数指针.在Controller中传递数据非常方便,还是继续上一章的例子,将数据从S ...

  5. ubuntu14.04 中国源

    deb http://cn.archive.ubuntu.com/ubuntu/ trusty main restricted universe multiversedeb http://cn.arc ...

  6. DropDownList1

    循环绑定数据到DropDownList1 foreach (SPList ls in web.Lists) { LIColl.Add(ls.Title);//将数据保存list中 } dwlist.D ...

  7. java类的封装 继承 多态

    1.猜数字小游戏 package cn.jiemoxiaodi_02; import java.util.Scanner; /** * 猜数字小游戏 * * @author huli * */ pub ...

  8. (转)Sql Server 对锁的初步认识

    一:到底都有哪些锁 学习锁之前,必须要知道锁大概有几种???通常情况下作为码农我们只需知道如下几个锁即可... 1.S(Share)锁 为了方便理解,我们可以直接这么认为,当在select的时候在表, ...

  9. struts2 标签问题----escape="false" 这个属性

    1.在编程过程中,会遇到这个动西,escape="false" eg: <s:fielderror escape="false"/>-------& ...

  10. asp.net mvc int[] 和 string[] 自定义数组绑定

    新建类,int[]数组模型绑定 using System; using System.Collections.Generic; using System.Linq; using System.Web; ...