Algorithms: Design and Analysis, Part 1 - Programming Assignment #1
自我总结:
1.编程的思维不够,虽然分析有哪些需要的函数,但是不能比较好的汇总整合
2.写代码能力,容易挫败感,经常有bug,很烦心,耐心不够好
题目:
In this programming assignment you will implement one or more of the integer multiplication algorithms described in lecture.
To get the most out of this assignment, your program should restrict itself to multiplying only pairs of single-digit numbers. You can implement the grade-school algorithm if you want, but to get the most out of the assignment you'll want to implement recursive integer multiplication and/or Karatsuba's algorithm.
So: what's the product of the following two 64-digit numbers?
3141592653589793238462643383279502884197169399375105820974944592
2718281828459045235360287471352662497757247093699959574966967627
[TIP: before submitting, first test the correctness of your program on some small test cases of your own devising. Then post your best test cases to the discussion forums to help your fellow students!]
[Food for thought: the number of digits in each input number is a power of 2. Does this make your life easier? Does it depend on which algorithm you're implementing?]
The numeric answer should be typed in the space below. So if your answer is 1198233847, then just type 1198233847 in the space provided without any space / commas / any other punctuation marks.
(We do not require you to submit your code, so feel free to use any programming language you want --- just type the final numeric answer in the following space.)
答案:
import math
# Base
B=10
# No. of digits
n=64
# Numbers
x=3141592653589793238462643383279502884197169399375105820974944592
y=2718281828459045235360287471352662497757247093699959574966967627 def karatsuba(x, y):
if x < 10 or y < 10:
return x * y
# get longest digits
n = max(math.log10(x) + 1, math.log10(y) + 1)
# catch where n is odd
n -= n % 2
bn = B ** (n // 2)
x1, x2 = divmod(x, bn)
y1, y2 = divmod(y, bn)
ac = karatsuba(x1, y1)
bd = karatsuba(x2, y2)
# caluclate a+b and c + d subtracting already
# calculated ac and bd leaving ad + bc
adbc = karatsuba(x1 + x2, y1 + y2) - ac - bd
# x . y = 10 ^ n ac + 10^n/2 (ad + bc) + bd
return ((B ** n) * ac) + bn * adbc + bd res = karatsuba(x, y) print('%d * %d = %d' % (x, y, res))
运行的结果:
3141592653589793238462643383279502884197169399375105820974944592 * 2718281828459045235360287471352662497757247093699959574966967627 = 8539734222673565727722948056719317944556312698501627377409191379033726264982769845827675624200334881483773142083314390902243328
几个亮点:
1.通过求对数来求数字的长度
# get longest digits
n = max(math.log10(x) + 1, math.log10(y) + 1) 2.通过除以10^(n/2)的商和余数来区分一个数前半部分和后半部分,速度更快 超级好的参考资料:
https://courses.csail.mit.edu/6.006/spring11/exams/notes3-karatsuba
Algorithms: Design and Analysis, Part 1 - Programming Assignment #1的更多相关文章
- Algorithms: Design and Analysis, Part 1 - Problem Set 1 - Question 5
最后一个图像,用画图软件绘制了一下,自己的直接主观判断还是有些小问题的 注意:最后的灰色的线条会超过橙色的线条
- 6.046 Design and Analysis of Algorithms
课程信息 6.046 Design and Analysis of Algorithms
- Algorithms : Programming Assignment 3: Pattern Recognition
Programming Assignment 3: Pattern Recognition 1.题目重述 原题目:Programming Assignment 3: Pattern Recogniti ...
- Design and Analysis of Algorithms_Decrease-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Divide-and-Conquer
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Brute Froce
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Fundamentals of the Analysis of Algorithm Efficiency
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- Design and Analysis of Algorithms_Introduction
I collect and make up this pseudocode from the book: <<Introduction to the Design and Analysis ...
- 课程一(Neural Networks and Deep Learning),第三周(Shallow neural networks)—— 3.Programming Assignment : Planar data classification with a hidden layer
Planar data classification with a hidden layer Welcome to the second programming exercise of the dee ...
随机推荐
- 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)
题意 题目链接 Sol 解题的关键是看到题目里的提示... 设\(f[i]\)表示到第\(i\)天所持有软妹币的最大数量,显然答案为\(max_{i = 1}^n f[i]\) 转移为\(f_i = ...
- thinkphp3.2 create()
* create作用 * 1.将表单元素中的值和数据库字段意义匹配 * 2.将数据库中没有的字段在数组中去除 if(IS_ ...
- HTML5和IOS、Android之间的交互
HTML5向IOS.Android传参: html给native传参需要注意三点: 1.判断终端设备,一般我们都是双系统开发,android和ios语言又不一样:我们需要用不同的方法给他们传递参数: ...
- PHP链接mysql 出现:由于目标计算机积极拒绝,无法连接
1.PHP链接mysql 出现:由于目标计算机积极拒绝,无法连接 2.原因是mysql服务没有启动,图标呈现红色 3.启动服务即可,打开cmd,输入net start mysql即可 4.启动后,图标 ...
- .Net Core+Vue.js+ElementUI 实现前后端分离
.Net Core+Vue.js+ElementUI 实现前后端分离 Tags: Vue 架构 前端采用:Vue.js.Element-UI.axios 后端采用:.Net Core Mvc 本项目是 ...
- [WinCE] Can't find P/Invoke DLL sqlceme35.dll
找到目录: C:\Program Files (x86)\Microsoft SQL Server Compact Edition\v3.5\Devices\wce500\armv4i 将 sqlce ...
- Jenkins操作,实现增删改查
Jenkins的版本是:Jenkins2.138.1 实现的操作接口: using System; using System.Collections.Generic; namespace iHRPub ...
- 转: c#.net利用RNGCryptoServiceProvider产生任意范围强随机数的办法
//这样产生0 ~ 100的强随机数(含100) ; int rnd = int.MinValue; decimal _base = (decimal)long.MaxValue; ]; System ...
- [翻译] PTEHorizontalTableView
PTEHorizontalTableView Horizontal UITableView inspired by EasyTableView. 水平滚动的UITableView,灵感来自于EasyT ...
- Linux env命令详解
env:查询环境变量 常用的命令展示 查看当前环境的环境变量 [root@localhost ~]# env HOSTNAME=localhost.localdomain SELINUX_ROLE_R ...