5301: [Cqoi2018]异或序列

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 204  Solved: 155
[Submit][Status][Discuss]

Description

已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子
序列满足异或和等于 k 。
也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]^a[x+1]^…^a[y]=k的x,y有多少组。
 

Input

输入文件第一行,为3个整数n,m,k。
第二行为空格分开的n个整数,即ai,a2,….an。
接下来m行,每行两个整数lj,rj,表示一次查询。
1≤n,m≤105,O≤k,ai≤105,1≤lj≤rj≤n

Output

输出文件共m行,对应每个查询的计算结果。

Sample Input

4 5 1
1 2 3 1
1 4
1 3
2 3
2 4
4 4

Sample Output

4
2
1
2
1
 
题解:改为前缀xor和,然后莫队一下。
 #include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<iostream> #define N 100007
#define ll long long #define Wb putchar(' ')
#define We putchar('\n')
#define rg register int
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
}
inline void write(ll x)
{
if(x<) putchar('-'),x=-x;
if (x==) putchar();
int num=;char c[];
while(x) c[++num]=(x%)+,x/=;
while(num) putchar(c[num--]);
} int n,m,K,blo;
int a[N],bel[N],cnt[N<<];
ll ans[N];
struct Node
{
int l,r,id;
friend bool operator<(Node x,Node y)
{
if (bel[x.l]!=bel[y.l]) return bel[x.l]<bel[y.l];
return x.r<y.r;
}
}Q[N]; void solve()
{
int l=,r=;ll res=;
for (int i=;i<=m;i++)
{
while(l<Q[i].l-)
cnt[a[l]]--,res-=cnt[K^a[l]],l++;
while(l>Q[i].l-)
l--,res+=cnt[K^a[l]],cnt[a[l]]++;
while(r<Q[i].r)
r++,res+=cnt[K^a[r]],cnt[a[r]]++;
while(r>Q[i].r)
cnt[a[r]]--,res-=cnt[K^a[r]],r--;
ans[Q[i].id]=res;
}
}
int main()
{
n=read(),m=read(),K=read(),blo=(int)sqrt(n);
for (rg i=;i<=n;i++) a[i]=read()^a[i-];
for (rg i=;i<=n;i++) bel[i]=(i-)/blo+;
for (rg i=;i<=m;i++)
Q[i].l=read(),Q[i].r=read(),Q[i].id=i;
sort(Q+,Q+m+);
solve();
for (rg i=;i<=m;i++)
write(ans[i]),We;
}

bzoj 5301 [Cqoi2018]异或序列 莫队的更多相关文章

  1. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  2. BZOJ5301:[CQOI2018]异或序列(莫队)

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

  3. 洛谷P4462 [CQOI2018]异或序列(莫队)

    题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...

  4. bzoj 5301: [Cqoi2018]异或序列

    蛤?这一年cqoi的题这么水???? 这不就是个sb莫队吗 这样写怕是会被打死,,, 注意\(a_x\ XOR a_{x+1}\ XOR\ ...\ a_{y}=s_{x-1}\ XOR\ s_y\) ...

  5. [CQOI2018]异或序列 (莫队,异或前缀和)

    题目链接 Solution 有点巧的莫队. 考虑到区间 \([L,R]\) 的异或和也即 \(sum[L-1]~\bigoplus~sum[R]\) ,此处\(sum\)即为异或前缀和. 然后如何考虑 ...

  6. P4462 [CQOI2018]异或序列 莫队

    题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...

  7. CQOI2018异或序列 [莫队]

    莫队板子 用于复习 #include <cstdio> #include <cstdlib> #include <algorithm> #include <c ...

  8. luogu P4462 [CQOI2018]异或序列 |莫队

    题目描述 已知一个长度为n的整数数列a1,a2,...,an,给定查询参数l.r,问在al,al+1,...,ar​区间内,有多少子序列满足异或和等于k.也就是说,对于所有的x,y (I ≤ x ≤ ...

  9. 【CQOI2018】异或序列 - 莫队

    题目描述 已知一个长度为n的整数数列 $a_1,a_2,...,a_n$​,给定查询参数l.r,问在 $a_l,a_{l+1},...,a_r$​ 区间内,有多少子序列满足异或和等于k.也就是说,对于 ...

随机推荐

  1. Python写一个根据日期计算是星期几的模块

    import datetimedef get_week_day(date): week_day = { 0: '星期一', 1: '星期二', 2: '星期三', 3: '星期四', 4: '星期五' ...

  2. eclipse 中使用git

    1.安装egit插件,在新版的eclipse中已经集成了这个插件,省了不少时间, 旧版的eclipse可以在help->install new software中点击add,写入名称,网址具体如 ...

  3. css3学习笔记一

    首先界面是二维的但也可以有三维的效果.先了解浏览器兼容性问题,火狐加前缀(-moz-)IE加(-MF-)谷歌加(-webkit),简单介绍css3的几个属性. 对于背景来说如果是单纯着一种颜色可以会单 ...

  4. 福大软工1816 · 评分结果 · Alpha冲刺

    作业地址:alpha冲刺1.alpha冲刺2.alpha冲刺3.alpha冲刺4.alpha冲刺5.alpha冲刺6.alpha冲刺7.alpha冲刺8.alpha冲刺9.alpha冲刺10 作业提交 ...

  5. BETA5/7

    前言 我们居然又冲刺了·五 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 前一份代码方案全部垮掉,我,重构啦 接下来的计划 加速加速,一定要完成速度模块 ...

  6. Leetcode题库——11.盛最多水的容器

    @author: ZZQ @software: PyCharm @file: maxArea.py @time: 2018/10/11 21:47 说明:给定 n 个非负整数 a1,a2,...,an ...

  7. Codeforces Round #157 (Div. 1) B. Little Elephant and Elections 数位dp+搜索

    题目链接: http://codeforces.com/problemset/problem/258/B B. Little Elephant and Elections time limit per ...

  8. Scanner的例子

    package com.firstDay.one; import java.util.Scanner; public class Information { /** * @param args */ ...

  9. Mongodb 分片操作 介绍

    为什么需要分片操作?由于数据量太大,使得CPU,内存,磁盘I/O等压力过大.当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量.这时,我们就可以通过在多台 ...

  10. latex添加eps文档

    latex添加图像时,要将.eps文档放在当前文件夹中,然后使用: % For one-column wide figures use\begin{figure}\begin{center}% Use ...