题目描述

曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置。超能粒子炮·改相比超能粒子炮,在威力上有了本质的提升。它有三个参数n,k。它会向编号为0到k的位置发射威力为C(n,k) mod 2333的粒子流。现在SHTSC给出了他的超能粒子炮·改的参数,让你求其发射的粒子流的威力之和模2333。

输入

第一行一个整数t。表示数据组数。
之后t行,每行二个整数n,k。含义如题面描述。
k<=n<=10^18,t<=10^5

输出

t行每行一个整数,表示其粒子流的威力之和模2333的值。

样例输入

1
5 5

样例输出

32


题目大意

求$\sum\limits_{i=0}^kC_n^i\ mod\ 2333$的值

题解

Lucas定理

设$p=2333,a=\frac kp,b=k\ mod\ p$,那么有:

于是可以递推预处理出0~2332内的组合数即f值,然后对于输入的n和k递归求解即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 2400
using namespace std;
typedef long long ll;
const ll mod = 2333;
ll c[N][N] , sum[N][N];
void init()
{
ll i , j;
for(i = 0 ; i <= mod ; i ++ )
{
c[i][0] = sum[i][0] = 1;
for(j = 1 ; j <= i ; j ++ ) c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
for(j = 1 ; j <= mod ; j ++ ) sum[i][j] = (sum[i][j - 1] + c[i][j]) % mod;
}
}
ll choose(ll n , ll m)
{
if(n < m) return 0;
if(n < mod && m < mod) return c[n][m];
return choose(n / mod , m / mod) * choose(n % mod , m % mod) % mod;
}
ll calc(ll n , ll k)
{
if(k < mod) return sum[n % mod][k % mod];
return (sum[n % mod][mod - 1] * calc(n / mod , k / mod - 1) + choose(n / mod , k / mod) * calc(n % mod , k % mod)) % mod;
}
int main()
{
init();
int T;
ll n , k;
scanf("%d" , &T);
while(T -- ) scanf("%lld%lld" , &n , &k) , printf("%lld\n" , calc(n , k));
return 0;
}

【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理的更多相关文章

  1. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  3. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  4. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  5. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  6. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  7. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  8. Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP

    传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...

  9. bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改

    http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...

随机推荐

  1. browser-sync 文件监听失败的解决方案

    问题 为了方便实时预览前端开发过程中修改源码后的页面,我在全球最大的同性交友网Github中找到了一个非常实用的工具,browser-sync. 安装使用方式请自行到官网https://browser ...

  2. 动态权限<二>之淘宝、京东、网易新闻 权限申请交互设计对比分析

    移动智能设备的快速普及,给生活带来巨大的精彩,但是智能设备上用户的信息数据很多,隐私数据也非常多,各种各样的app可能通过各种方式在悄悄的收集用户数据,而用户的隐私就变得耐人寻味了.比如之前的可以无限 ...

  3. IOS测试-Fastmonkey

    目录: 一.背景 二.Fastmonkey介绍 三.Fastmonkey操作前准备 四.Fastmonkey工程配置过程 五.执行Monkey测试 六.FAQ Fastmonkey实践 一.背景: 因 ...

  4. 自动化工具 fastmonkey

    Android Monkey 二次开发,实现高速点击的 Android Monkey 一.工具介绍: 1.本工具是testhome上 zhangzhao_lenovo开源出来的工具,源码暂时还未开源: ...

  5. [Lua] try catch实现

    参考了https://blog.csdn.net/waruqi/article/details/53649634这里的代码,但实际使用时还有些问题,修改后在此记录一下. -- 异常捕获 functio ...

  6. centos6.9 安装完xampp 7.2.0后,执行/opt/lampp/lampp报错

    # /opt/lampp/lampp egrep: error while loading shared libraries: libc.so.6: cannot open shared object ...

  7. 多线程分段下载研究的python实现(一)

    我一直对下载文件比较感兴趣.现在我下载文件大部分是用迅雷,但迅雷也有一些不如意的地方,内存占用大,一些不必要的功能太多,不可定制.尤其是最后一点.现在有些下载对useragent,cookie,aut ...

  8. gzip命令详解

    基础命令学习目录首页 好文链接:https://blog.csdn.net/m0_38132420/article/details/78577247 原文链接:http://www.cnblogs.c ...

  9. easyui panel异步获取后台数据在前台显示

    我在使用easyui的时候,想做一个向下图所示的效果,这个panel的样式已经做好了,想从后台异步获取json数据,然后填入到文本框中,不知道哪位大神能给点指导?万分感谢! 放入表单中,使用form对 ...

  10. python判断文件和文件夹是否存在、没有则创建文件夹

    原文出处:https://www.cnblogs.com/hushaojun/p/4533241.html >>> import os >>> os.path.ex ...