keras 修仙笔记二(ResNet算法例子)
对于牛逼的程序员,人家都喜欢叫他大神;因为大神很牛逼,人家需要一个小时完成的技术问题,他就20分钟就搞定。Keras框架是一个高度集成的框架,学好它,就犹如掌握一个法宝,可以呼风唤雨。所以学keras 犹如在修仙,呵呵。请原谅我无厘头的逻辑。
ResNet
关于ResNet算法,在归纳卷积算法中有提到了,可以去看看。
1, ResNet 要解决的问题
ResNet要解决的问题是在求损失函数最小值时,梯度下降太快了,无法捕捉到最优解。
解决的方法是在求激活函数值 A值的时候
a^[l+1] =g(z^[l+1] +?)
〖?可以是a〗^([l-1]) 也可以是a^([l])等等
这样就能避免梯度下降过快
以上图是不同层数的模型的下降曲线
2, 构建自己的ResNet模型
在resnet网络中,identity block的跳跃可能有1个或者2(conv2D+batchnorm+Relu)个,下面是两个可选图:
或者:
import numpy as np
import tensorflow as tf
from keras import layers
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
from keras.models import Model, load_model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from resnets_utils import *
from keras.initializers import glorot_uniform
import scipy.misc
from matplotlib.pyplot import imshow
%matplotlib inline import keras.backend as K
K.set_image_data_format('channels_last')
K.set_learning_phase(1)
from keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
from keras.models import Model, load_model
红色字体是重点关注的函数,很多在上节就已经说明,这里是BatchNormalization函数是为了规范化通道参数的,都必须给予命名:bn_name_base+’2?’
Activation 函数就不用命名了 2.1 创建标识块 identify block
def identity_block(X, f, filters, stage, block):
"""
##参数说明
## X:输入的维度 (m, n_H_prev, n_W_prev, n_C_prev)
## f:整数,中间conv2D的维度
##filters 过滤核的维度
## block 用于命名网络中的层
###返回值: 维度为(n_H, n_W, n_C) ###返回值: 维度为(n_H, n_W, n_C)
""" ##定义偏差
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch' ##过滤核
F1, F2, F3 = filters ##保存输入的值
X_shortcut = X # #第一层卷积
X = Conv2D(filters = F1, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines)
X = Conv2D(filters = F2, kernel_size = (f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X) # Third component of main path (≈2 lines)
X = Conv2D(filters = F3, kernel_size = (1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis=3, name = bn_name_base + '2c')(X) ###添加shortcut操作的激化
X = layers.add([X, X_shortcut])
X = Activation('relu')(X) ### END CODE HERE ### return X
小测:
tf.reset_default_graph() with tf.Session() as test:
np.random.seed(1)
A_prev = tf.placeholder("float", [3, 4, 4, 6])
X = np.random.randn(3, 4, 4, 6)
A = identity_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a')
test.run(tf.global_variables_initializer())
out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0})
print("out = " + str(out[0][1][1][0]))
结果:
out[ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003]
2.2 卷积块 convolutional_block
卷积块主要是为了适配=g(+?)例子中?的维度跟的维度不匹配的现象,具体是在shortcut增加一个卷积,使其维度能都适配,而且是没有经过activation激活过的,如图:
这样就可以通过卷积核的维度达到我们想到的维度减少非线性的函数操作。
def convolutional_block(X, f, filters, stage, block, s = 2):
"""
参数跟identity_block是一样的,就多了一个
s=2 表示卷积的步长
""" # defining name basis
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters
F1, F2, F3 = filters # Save the input value
X_shortcut = X ##### MAIN PATH #####
# First component of main path
X = Conv2D(F1, (1, 1), strides = (s,s), name = conv_name_base + '2a', padding='valid', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines)
X = Conv2D(F2, (f, f), strides = (1, 1), name = conv_name_base + '2b',padding='same', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X)
X = Activation('relu')(X) # Third component of main path (≈2 lines)
X = Conv2D(F3, (1, 1), strides = (1, 1), name = conv_name_base + '2c',padding='valid', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X) ##### SHORTCUT PATH #### (≈2 lines)
X_shortcut = Conv2D(F3, (1, 1), strides = (s, s), name = conv_name_base + '',padding='valid', kernel_initializer = glorot_uniform(seed=0))(X_shortcut)
X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '')(X_shortcut) # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines)
X = layers.add([X, X_shortcut])
X = Activation('relu')(X) ### END CODE HERE ### return X
小测:
tf.reset_defalut_graph() with tf.Session() as test:
np.random.seed(1)
A_prev=tf.placeholder(“float”,[3,4,4,6])
X=np.random.randn(3,4,4,6)
A=convolutional_block(A_prev,f=2,filters=[2,4,6],stage=1,block=’a’)
test.run(tf.global_variable_initializer())
out.test.run([A],feed_dict={A_prev:X,K.learning_phase():0})
print(“out=”+str(out[0][1][1][0]))
结果:
结果: out = [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603]
2.3 构建完整的例子
接下来我们根据
CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
-> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER构建一个完整的resnet网络
def ResNet50(input_shape = (64, 64, 3), classes = 6):
"""
Implementation of the popular ResNet50 the following architecture:
CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
-> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER Arguments:
input_shape -- shape of the images of the dataset
classes -- integer, number of classes Returns:
model -- a Model() instance in Keras
""" # Define the input as a tensor with shape input_shape
X_input = Input(input_shape) # Zero-Padding
X = ZeroPadding2D((3, 3))(X_input) # Stage 1
X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
X = Activation('relu')(X)
X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2
X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
X = identity_block(X, 3, [64, 64, 256], stage=2, block='b')
X = identity_block(X, 3, [64, 64, 256], stage=2, block='c') ### START CODE HERE ### # Stage 3 (≈4 lines)
# The convolutional block uses three set of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a".
# The 3 identity blocks use three set of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".
X = convolutional_block(X, f = 3, filters=[128,128,512], stage = 3, block='a', s = 2)
X = identity_block(X, f = 3, filters=[128,128,512], stage= 3, block='b')
X = identity_block(X, f = 3, filters=[128,128,512], stage= 3, block='c')
X = identity_block(X, f = 3, filters=[128,128,512], stage= 3, block='d') # Stage 4 (≈6 lines)
# The convolutional block uses three set of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a".
# The 5 identity blocks use three set of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".
X = convolutional_block(X, f = 3, filters=[256, 256, 1024], block='a', stage=4, s = 2)
X = identity_block(X, f = 3, filters=[256, 256, 1024], block='b', stage=4)
X = identity_block(X, f = 3, filters=[256, 256, 1024], block='c', stage=4)
X = identity_block(X, f = 3, filters=[256, 256, 1024], block='d', stage=4)
X = identity_block(X, f = 3, filters=[256, 256, 1024], block='e', stage=4)
X = identity_block(X, f = 3, filters=[256, 256, 1024], block='f', stage=4) # Stage 5 (≈3 lines)
# The convolutional block uses three set of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a".
# The 2 identity blocks use three set of filters of size [256, 256, 2048], "f" is 3 and the blocks are "b" and "c".
X = convolutional_block(X, f = 3, filters=[512, 512, 2048], stage=5, block='a', s = 2) # filters should be [256, 256, 2048], but it fail to be graded. Use [512, 512, 2048] to pass the grading
X = identity_block(X, f = 3, filters=[256, 256, 2048], stage=5, block='b')
X = identity_block(X, f = 3, filters=[256, 256, 2048], stage=5, block='c') # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)"
# The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".平均值池化
X = AveragePooling2D(pool_size=(2,2))(X) ### END CODE HERE ### # output layer
X = Flatten()(X)
X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X) # Create model
model = Model(inputs = X_input, outputs = X, name='ResNet50') return model
2.4 执行模型
1)加载模型
model = ResNet50(input_shape = (64, 64, 3), classes = 6)
2)编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
3)加载数据,训练模型
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255. # Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
model.fit(X_train, Y_train, epochs = 20, batch_size = 32)
4)测试模型
preds = model.evaluate(X_test, Y_test)
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
输出结果:
120/120 [==============================] - 9s 72ms/step
Loss = 0.729047638178
Test Accuracy = 0.891666666667
=========================================================
总结:这个例子到底位置,训练结果可能不是很满意,可以进一步加大测试集或者加大网络来达到优化的。
参考
中文keras手册:http://keras-cn.readthedocs.io/en/latest/layers/core_layer/
吴恩达网易课堂教程
keras 修仙笔记二(ResNet算法例子)的更多相关文章
- [Java 泥水匠] Java Components 之二:算法篇之项目实践中的位运算符(有你不懂的哦)
作者:泥沙砖瓦浆木匠网站:http://blog.csdn.net/jeffli1993个人签名:打算起手不凡写出鸿篇巨作的人,往往坚持不了完成第一章节. 交流QQ群:[编程之美 365234583] ...
- python基础(9)--递归、二叉算法、多维数组、正则表达式
1.递归 在函数内部,可以调其他函数,如果一个函数在内部调用它本身,这个函数就是递归函数.递归算法对解决一大类问题是十分有效的,它往往使算法的描述简洁而且易于裂解 递归算法解决问题的特点: 1)递归是 ...
- 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...
- hihocoder#1098 : 最小生成树二·Kruscal算法
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...
- Hihocoder #1098 : 最小生成树二·Kruskal算法 ( *【模板】 )
#1098 : 最小生成树二·Kruscal算法 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用 ...
- 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法
垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己主动内存管理 上(一)内存分配 垃圾回收GC:.Net自己主动内存管理 上(二)内存算法 垃圾回收GC:.Net自己 ...
- 分布式共识算法 (二) Paxos算法
系列目录 分布式共识算法 (一) 背景 分布式共识算法 (二) Paxos算法 分布式共识算法 (三) Raft算法 分布式共识算法 (四) BTF算法 一.背景 1.1 命名 Paxos,最早是Le ...
- 【笔记】二分类算法解决多分类问题之OvO与OvR
OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR ...
- keras 修仙笔记一
对于牛逼的程序员,人家都喜欢叫他大神:因为大神很牛逼,人家需要一个小时完成的技术问题,他就20分钟就搞定.Keras框架是一个高度集成的框架,学好它,就犹如掌握一个法宝,可以呼风唤雨.所以学keras ...
随机推荐
- Linux nl命令详解
nl常见命令参数 nl命令在linux系统中用来计算文件中行号 -b :指定行号指定的方式,主要有两种: -b a :表示不论是否为空行,也同样列出行号(类似 cat -n): -b t :如果有空 ...
- springmvc常用的组件,注解,跳转
路径映射 XXXHandlerMapping 随开发配置越来越多 注解到java代码中来简化xml配置 请求到哪个Controller 控制器bean Controller 随着开发配置越来越多 注解 ...
- Element对象 常用属性与常用方法
常用属性 .children 子元素列表 .childElementCount 子元素数量 .firstElementChild 第一个子元素 .lastElementChild 最后一个子元素 .c ...
- [CSS]关于z-index与position的一次奇异经历
前言: 前不久,同事S遇到了一个关于position和z-index的问题. 他折腾了一天没搞定,群发了邮件寻求帮助, 我一开始以为很简单,就主动说帮忙,简单尝试之后,才发现貌似没那么简单. 问题主要 ...
- 转 oracle的热备份和冷备份
一.冷备份介绍: 冷备份数据库是将数据库关闭之后备份所有的关键性文件包括数据文件.控制文件.联机REDO LOG文件,将其拷贝到另外的位置.此外冷备份也可以包含对参数文件和口令文件的备份,但是这 ...
- linux块设备缓存bcache
1 Bcache介绍Bcache是一种缓存技术,它是根据SSD的特性设计的,由于SSD的随机读写速度要比普通硬盘的随机读写快N多倍,但是一般SSD的容量小且贵,当然土豪除外,所以我们可以综合SSD的读 ...
- ubuntu 14.4 apache2 django
记录下自己的配置过程以及遇见的问题. 系统: Ubuntu 14.04 64 系统内置Python版本:2.7.6 先声明,我一下操作都以root身份. 若登录是非root身份,请在命令前加sudo. ...
- 【转】[置顶] 在Android中显示GIF动画
gif图动画在Android中还是比较常用的,比如像新浪微博中,有很多gif图片,而且展示非常好,所以我也想弄一个.经过我多方的搜索资料和整理,终于弄出来了,其实github上有很多开源的gif的展示 ...
- ubuntu16.04常见的问题解决方案
问题一:关于咖啡主机和其他服务器厂商和个人虚拟机VM10安装ubuntu16.04 ubuntu16.04默认是没有root用户的,要想有必须要通过用户创建,通常安装ubuntu16.04会有个让你创 ...
- Mysql 多实例实施步骤
基本理论:利用同一套安装程序,不同配置文件,不同启动程序,不同数据目录.有公用资源,也有私有资源. 实现步骤: 1.正常安装mysql,二进制安装或者编译安装. 2.创建mysql多实例总目录,总目录 ...