最小圆覆盖

问题:给定平面上的一个点集,求半径最小的一个圆,使得点集中的点都在其内部或上面。

随机增量算法:

  定义:点集A的最小圆覆盖是Circle(A)

  定理:如果Circle(A)=C1,且a不被C1覆盖,那么a在Circle(AU{a})的边界上。

  证明:换一种找最小圆覆盖的思路,我们初始化一些圆,圆心为A中的点,半径为0,并且让半径慢慢变大,必定存在一个时刻,所有圆的交集由空变为非空,那个最开始的非空交集是一个点,并且就是我们最小圆覆盖的圆心位置。当A中的所有点代表的圆有交集时,点a代表的圆还没有到达那个点(否则点a就被C1覆盖掉了),我们让半径继续增大,必然会有一个时刻点a代表的圆与A代表的圆的公共区域相交,这个点就是AU{a}的最小圆覆盖的圆心,它到点a的距离就是半径。

  算法:

 c = ( p[] )
for i = to n
if p[i] in c then continue
c = ( p[i] )
for j = to i-
if p[j] in c then continue
c = ( p[i], p[j] )
for k = to j-
if p[k] in c then continue
c = ( p[i], p[j], p[k] )

  ((p[i],p[j])代表包含这两个点的最小的圆)

  第一层循环的循环不变量是:c是p[1],p[2],...,p[i-1]的最小圆覆盖。

  第二层循环的循环不变量是:c是p[1],p[2],...,p[j-1]和p[i]的最小圆覆盖。

  第一层循环的循环不变量是:c是p[1],p[2],...,p[k-1],p[i]和p[j]的最小圆覆盖。

  转移用上面的定理证明。

  有个性质:上面伪代码的第10行中的三个点不可能共线(只需分别证明三个点中的一个不会在另外两个代表的线段上就行了)。

 /**************************************************************
Problem: 1336
User: idy002
Language: C++
Result: Accepted
Time:372 ms
Memory:2372 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm>
#define line(a,b) ((b)-(a))
#define N 100010
#define eps 1e-10
using namespace std; int sg( double x ) { return (x>-eps)-(x<eps); }
struct Vector {
double x, y;
Vector(){}
Vector( double x, double y ):x(x),y(y){}
Vector operator+( const Vector &b ) const { return Vector(x+b.x,y+b.y); }
Vector operator-( const Vector &b ) const { return Vector(x-b.x,y-b.y); }
Vector operator*( double b ) const { return Vector(x*b,y*b); }
Vector operator/( double b ) const { return Vector(x/b,y/b); }
double operator^( const Vector &b ) const { return x*b.y-y*b.x; }
double len() { return sqrt(x*x+y*y); }
Vector normal() { return Vector(-y,x); }
};
typedef Vector Point;
Point inter( Point P, Vector u, Point Q, Vector v ) {
return P+u*((line(P,Q)^v)/(u^v));
}
struct Circle {
Point o;
double r;
Circle(){}
Circle( Point &a ) {
o = a;
r = ;
}
Circle( Point &a, Point &b ) {
o = (a+b)/;
r = (a-b).len()/;
}
Circle( Point &a, Point &b, Point &c ) {
Point P=(a+b)/, Q=(b+c)/;
Vector u=(a-b).normal(), v=(b-c).normal();
o = inter(P,u,Q,v);
r = (a-o).len();
}
bool contain( Point &a ) {
return sg( line(a,o).len()-r ) <= ;
}
}; int n;
Point pts[N];
Circle cir; int main() {
scanf( "%d", &n );
for( int i=; i<=n; i++ ) {
double x, y;
scanf( "%lf%lf", &x, &y );
pts[i] = Point(x,y);
}
random_shuffle( pts+, pts++n );
cir = Circle(pts[]);
for( int i=; i<=n; i++ ) {
if( cir.contain(pts[i]) ) continue;
cir = Circle(pts[i]);
for( int j=; j<i; j++ ) {
if( cir.contain(pts[j]) ) continue;
cir = Circle(pts[i],pts[j]);
for( int k=; k<j; k++ ) {
if( cir.contain(pts[k]) ) continue;
cir = Circle(pts[i],pts[j],pts[k]);
}
}
}
printf( "%.10lf\n", cir.r );
printf( "%.10lf %.10lf\n", cir.o.x, cir.o.y );
}

bzoj 1336 最小圆覆盖的更多相关文章

  1. bzoj 1337 最小圆覆盖

    /************************************************************** Problem: 1337 User: idy002 Language: ...

  2. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  3. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

  4. Bzoj 1336&1337 Alien最小圆覆盖

    1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 Sec  Memory Limit: 162 MBSec  Special Judge Submit: 1473  ...

  5. 【BZOJ】1336: [Balkan2002]Alien最小圆覆盖

    题解 我们先把所有点random_shuffle一下 然后对前i - 1个点计算一个最小圆覆盖,然后第i个点如果不在这个圆里,那么我们把这个点当成一个新的点,作为圆心,半径为0 从头枚举1 - i - ...

  6. [BZOJ 3564] [SHOI2014] 信号增幅仪 【最小圆覆盖】

    题目链接:BZOJ - 3564 题目分析 求最小椭圆覆盖,题目给定了椭圆的长轴与 x 轴正方向的夹角,给定了椭圆长轴与短轴的比值. 那么先将所有点旋转一个角度,使椭圆长轴与 x 轴平行,再将所有点的 ...

  7. BZOJ 3564: [SHOI2014]信号增幅仪 最小圆覆盖

    3564: [SHOI2014]信号增幅仪 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3564 Description 无线网络基站在 ...

  8. 2018.07.04 BZOJ 2823: AHOI2012信号塔(最小圆覆盖)

    2823: [AHOI2012]信号塔 Time Limit: 10 Sec Memory Limit: 128 MB Description 在野外训练中,为了确保每位参加集训的成员安全,实时的掌握 ...

  9. bzoj 2823: [AHOI2012]信号塔 最小圆覆盖

    题目大意: 给定n个点,求面积最小的园覆盖所有点.其中\(n \leq 10^6\) 题解: 恩... 刚拿到这道题的时候... 什么???最小圆覆盖不是\(O(n^3)\)的随机增量算法吗????? ...

随机推荐

  1. php环境搭建 (window环境下 eclipse+Wampserver)

    看了好多的环境搭建感觉好复杂呀,自己搞了一下简单的可以用了 php的手册   http://www.php.net/manual/zh/ 一,下载 1,下载eclipse http://www.ecl ...

  2. Codeforces 963A Alternating Sum(等比数列求和+逆元+快速幂)

    题目链接:http://codeforces.com/problemset/problem/963/A 题目大意:就是给了你n,a,b和一段长度为k的只有'+'和‘-’字符串,保证n+1被k整除,让你 ...

  3. 算法笔试题整理——升级蓄水池 && 字符串数字表达式计算值 && 求旅游完所有景点需要的最少天数 && 宝箱怪

    1. 小米笔试题——升级蓄水池 题目描述: 在米兔生活的二维世界中,建造蓄水池非常简单. 一个蓄水池可以用n个坐标轴上的非负整数表示,代表区间为[0-n]范围内宽度为1的墙壁的高度. 如下图1,黑色部 ...

  4. Python SGMLParser 的1个BUG??

    首先说一下,我用的是python 2.7,刚好在学Python,今天想去爬点图片当壁纸,但是当我用 SGMLParser 做 <img> 标签解析的时候,发现我想要的那部分根本没获取到,我 ...

  5. pytest的参数化测试

    感觉在单元测试当中可能有用, 但在django这种框架中,用途另一说. import pytest import tasks from tasks import Task def test_add_1 ...

  6. Spark(十六)DataSet

    Spark最吸引开发者的就是简单易用.跨语言(Scala, Java, Python, and R)的API. 本文主要讲解Apache Spark 2.0中RDD,DataFrame和Dataset ...

  7. day7 面向对象进阶

    面向对象高级语法部分 通过@staticmethod装饰器即可把其装饰的方法变为一个静态方法,什么是静态方法呢?其实不难理解,普通的方法,可以在实例化后直接调用,并且在方法里可以通过self.调用实例 ...

  8. Vue.js—快速入门及实现用户信息的增删

    Vue.js是什么 Vue.js 是一套构建用户界面的渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注视图层,它不仅易于上手,还便于与第三方库或既有项目 ...

  9. js获取iframe的id

    有一个需求是在iframe页面调用父页面一个方法,开始我用window.parent.length来判断页面有几个层,但是不好用,因为我的浏览器安装了一个插件,这个插件会动态向页面插入一个iframe ...

  10. 【LOJ】#2024. 「JLOI / SHOI2016」侦查守卫

    题解 童年的回忆! 想当初,这是我考的第一次省选,我当时初二,我什么都不会,然后看着这个东西,是不是能用我一个月前才会的求lca,光这个lca我就调了一个多小时= =,然后整场五个小时,我觉得其他题不 ...