题目传送门:ARC090E

题意简述:

给定一张有 \(N\) 个点 \(M\) 条边的无向图。每条边有相应的边权,边权是正整数。

小 A 要从结点 \(S\) 走到结点 \(T\) ,而小 B 则相反,他要从结点 \(T\) 走到结点 \(S\) 。

小 A 和小 B 走一条边需要的时间都是这条边的边权,不论方向。

问有多少种走法,使得他们俩都走了最短路,但是他们不会相遇,这里相遇指的是在点上或者在边上相遇。

答案对 \(10^9+7\) 取模。

题解:

用 Dijkstra 算法求出以结点 \(S\) 和结点 \(T\) 出发到每个点的最短路和最短路条数。

把从结点 \(S\) 到结点 \(i\) 的最短路记作 \(d1_i\) ,最短路条数对 \(10^9+7\) 取模的结果记作 \(g1_i\)。

把从结点 \(T\) 到结点 \(i\) 的最短路记作 \(d2_i\) ,最短路条数对 \(10^9+7\) 取模的结果记作 \(g2_i\)。

把从结点 \(S\) 到结点 \(T\) 的最短路记作 \(Dist\) 。

考虑用容斥的方法计算答案。答案等于总方案数减去相遇的方案数。总方案数为 \(g1_T^2\) 。

因为走的都是最短路,而且边权是正的,不难证明两人只会相遇一次。

所以只要统计在每个点或者每条边经过的方案数即可。

考虑经过结点 \(i\) 的方案数:
前提是 \(d1_i+d2_i=Dist\) 且 \(d1_i=d2_i\) ,方案数为 \(g1_i^2g2_i^2\) 。

考虑经过边 \(i\overset{d}{\Longleftrightarrow}j\) (其中小 A 从结点 \(i\) 走向结点 \(j\) )的方案数:
前提是 \(d1_i+d+d2_i=Dist\) 且 \(d1_i+d>d2_j\) 且 \(d1_i<d+d2_j\) ,方案数为 \(g1_i^2g2_j^2\) 。

 #include<bits/stdc++.h>
#define F(i,a,b) for(int i=(a);i<=(b);++i)
#define eF(i,u) for(int i=h[u];i;i=nxt[i])
#define Mod 1000000007
using namespace std;
typedef long long ll;
typedef pair<ll,int> pli; int n,m,S,T;
ll Ans;
int U[],V[],D[];
int h[],nxt[],to[],w[],tot;
void ins(int x,int y,int z){nxt[++tot]=h[x];to[tot]=y;w[tot]=z;h[x]=tot;} ll d1[],d2[],g1[],g2[];bool v1[],v2[];
priority_queue<pli,vector<pli>,greater<pli> > pq; void Dij(ll*d,ll*g,bool*v,int s){
d[s]=0ll;
pq.push(pli(0ll,s));
g[s]=;
while(!pq.empty()){
pli P=pq.top(); pq.pop();
int u=P.second; ll du=P.first;
if(v[u]||d[u]<du) continue;
v[u]=;
eF(i,u){
if(d[to[i]]==du+w[i])
g[to[i]]=(g[to[i]]+g[u])%Mod;
if(d[to[i]]>du+w[i])
g[to[i]]=g[u],
d[to[i]]=du+w[i], pq.push(pli(d[to[i]],to[i]));
}
}
} int main(){
int x,y,z;
scanf("%d%d",&n,&m);
scanf("%d%d",&S,&T);
F(i,,m) scanf("%d%d%d",&x,&y,&z), ins(x,y,z), ins(y,x,z), U[i]=x, V[i]=y, D[i]=z;
memset(d1,0x3f,sizeof d1);
Dij(d1,g1,v1,S);
memset(d2,0x3f,sizeof d2);
Dij(d2,g2,v2,T);
ll Dist=d1[T];
Ans=g1[T]*g1[T]%Mod;
F(i,,n){
if(d1[i]+d2[i]==Dist&&d1[i]==d2[i])
Ans=(Ans-g1[i]*g1[i]%Mod*g2[i]%Mod*g2[i]%Mod)%Mod;
}
int u,v,d;
F(i,,m){
u=U[i], v=V[i], d=D[i];
if(d1[u]+d+d2[v]==Dist && d1[u]+d>d2[v] && d2[v]+d>d1[u]){
Ans=(Ans-g1[u]*g2[v]%Mod*g1[u]%Mod*g2[v]%Mod)%Mod;
}
u=V[i], v=U[i], d=D[i];
if(d1[u]+d+d2[v]==Dist && d1[u]+d>d2[v] && d2[v]+d>d1[u]){
Ans=(Ans-g1[u]*g2[v]%Mod*g1[u]%Mod*g2[v]%Mod)%Mod;
}
}
printf("%lld",(Ans%Mod+Mod)%Mod);
return ;
}

AtCoder ARC 090 E / AtCoder 3883: Avoiding Collision的更多相关文章

  1. [AtCoder arc090E]Avoiding Collision

    Description 题库链接 给出一张 \(N\) 个节点, \(M\) 条边的无向图,给出起点 \(S\) 和终点 \(T\) .询问两个人分别从 \(S\) 和 \(T\) 出发,走最短路不相 ...

  2. 【题解】Atcoder ARC#90 E-Avoiding Collision

    自己做出来固然开心,但是越发感觉到自己写题的确是很慢很慢了……往往有很多的细节反反复复的考虑才能确定,还要加油呀~ 这道题目的突破口在于正难则反.直接求有多少不相交的不好求,我们转而求出所有相交的.我 ...

  3. 【题解】Atcoder ARC#90 F-Number of Digits

    Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...

  4. AtCoder ARC 076E - Connected?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_c 平面上有一个R×C的网格,格点上可能写有数字1~N,每个数字出现两次.现在用一条曲线将一对相同的 ...

  5. AtCoder ARC 076D - Built?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_b 本题是一个图论问题——Manhattan距离最小生成树(MST). 在一个平面网格上有n个格点, ...

  6. AtCoder ARC 082E - ConvexScore

    传送门:http://arc082.contest.atcoder.jp/tasks/arc082_c 本题是一个平面几何问题. 在平面直角坐标系中有一个n元点集U={Ai(xi,yi)|1≤i≤n} ...

  7. Atcoder ARC 082C/D

    C - Together 传送门:http://arc082.contest.atcoder.jp/tasks/arc082_a 本题是一个数学问题. 有一个长度为n的自然数列a[1..n],对于每一 ...

  8. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  9. 【题解】Atcoder ARC#96 F-Sweet Alchemy

    首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...

随机推荐

  1. (转)Python中如何理解if __name__ == '__main__'

    摘要 通俗的理解 __name__ == '__main__' :假如你叫李凯.py,在朋友眼中,你是李凯( __name__ == '李凯' ):在你自己眼中,你是你自己( __name__ == ...

  2. 概率主题模型简介 Introduction to Probabilistic Topic Models

    此文为David M. Blei所写的<Introduction to Probabilistic Topic Models>的译文,供大家参考. 摘要:概率主题模型是一系列旨在发现隐藏在 ...

  3. 不记得oracle管理员密码,更改oracle sys密码的方法

    1.确保下面两条满足 a. sqlnet.ora里 SQLNET.AUTHENTICATION_SERVICES = (NTS) 的配置是否存在,不存在加上这句: b. 你的os 用户是不是属于ora ...

  4. 【刷题】UOJ #207 共价大爷游长沙

    火车司机出秦川,跳蚤国王下江南,共价大爷游长沙.每个周末,勤劳的共价大爷都会开车游历长沙市. 长沙市的交通线路可以抽象成为一个 \(n\) 个点 \(n−1\) 条边的无向图,点编号为 \(1\) 到 ...

  5. [CF850F] Rainbow Balls

    题目大意 这里 题解 我们枚举最后剩下的球的种类,那么其他球可以看做没用了. 设选定的球有\(a_i\)个,球的总数为\(s=\sum_{i=1}^n a_i\). 现在问题变为:在一个长度为\(s\ ...

  6. 【BZOJ4999】This Problem Is Too Simple!(线段树)

    [BZOJ4999]This Problem Is Too Simple!(线段树) 题面 BZOJ 题解 对于每个值,维护一棵线段树就好啦 动态开点,否则空间开不下 剩下的就是很简单的问题啦 当然了 ...

  7. linux内核设计与实现一书阅读整理 之第五章

    CHAPTER 5 系统调用 5.1 与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层,该层主要作用有三个: 为用户空间提供了一种硬件的抽象接口 系统调用保证了系统的稳定和安全 每个进 ...

  8. pg删除账号,权限的回收问题

    在pg中删除账号时,一般不能直接删除账号,要先将该账号上所有的对应权限收回,但往往这一步是比较繁琐的,可能当时赋权的对象类型很多,对象也比较多,虽然可以通过sql按照类型来收回针对整个schema的所 ...

  9. select标签和多行文本标签

    一.多行文本textarea <form> <div> <textarea name="more"></textarea> < ...

  10. python 中__getitem__ 和 __iter__ 的区别

    # -*- coding: utf-8 -*- class Library(object): def __init__(self): self.books = { 'title' : 'a', 'ti ...