对于驱动开发来说,设备模型的理解是根本,毫不夸张得说,理解了设备模型,再去看那些五花八门的驱动程序,你会发现自己站在了另一个高度,从而有了一种俯视的感觉,就像凤姐俯视知音和故事会,韩峰同志俯视女下属。

顾名而思义就知道设备模型是关于设备的模型,既不是任小强们的房模,也不是张导的炮模。对咱们写驱动的和不写驱动的人来说,设备的概念就是总线和与其相连的各种设备了。电脑城的IT工作者都会知道设备是通过总线连到计算机上的,而且还需要对应的驱动才能用,可是总线是如何发现设备的,设备又是如何和驱动对应起来的,它们经过怎样的艰辛才找到命里注定的那个他,它们的关系如何,白头偕老型的还是朝三暮四型的,这些问题就不是他们关心的了,而是咱们需要关心的。在房市股市千锤百炼的咱们还能够惊喜的发现,这些疑问的中心思想中心词汇就是总线、设备和驱动,没错,它们就是咱们这里要聊的Linux设备模型的名角。

总线、设备、驱动,也就是bus、device、driver,既然是名角,在内核里都会有它们自己专属的结构,在include/linux/device.h里定义。

52 struct bus_type {
53   const char              * name;
54     struct module           * owner;
55
56      struct kset             subsys;
57      struct kset             drivers;
58       struct kset             devices;
59      struct klist            klist_devices;
60      struct klist            klist_drivers;
61
62       struct blocking_notifier_head bus_notifier;
63
64      struct bus_attribute    * bus_attrs;
65       struct device_attribute * dev_attrs;
66      struct driver_attribute * drv_attrs;
67      struct bus_attribute drivers_autoprobe_attr;
68      struct bus_attribute drivers_probe_attr;
69
70      int (*match)(struct device * dev, struct device_driver * drv);
71       int (*uevent)(struct device *dev, char **envp,
72      int num_envp, char *buffer, int buffer_size);
73      int             (*probe)(struct device * dev);
74      int             (*remove)(struct device * dev);
75       void            (*shutdown)(struct device * dev);
76
77      int (*suspend)(struct device * dev, pm_message_t state);
78      int (*suspend_late)(struct device * dev, pm_message_t state);
79      int (*resume_early)(struct device * dev);
80       int (*resume)(struct device * dev);
81
82      unsigned int drivers_autoprobe:1;
83 };

124 struct device_driver {
125     const char              * name;
126      struct bus_type         * bus;
127
128      struct kobject          kobj;
129      struct klist            klist_devices;
130      struct klist_node       knode_bus;
131
132      struct module           * owner;
133      const char              * mod_name;  /* used for built-in modules */
134      struct module_kobject   * mkobj;
135
136     int     (*probe)        (struct device * dev);
137     int     (*remove)       (struct device * dev);
138      void    (*shutdown)     (struct device * dev);
139     int     (*suspend)      (struct device * dev, pm_message_t state);
140      int     (*resume)       (struct device * dev);
141 };

407 struct device {
408   struct klist  klist_children;
409   struct klist_node knode_parent;  /* node in sibling list */
410   struct klist_node knode_driver;
411   struct klist_node knode_bus;
412   struct device  *parent;
413
414   struct kobject kobj;
415   char bus_id[BUS_ID_SIZE]; /* position on parent bus */
416   struct device_type *type;
417   unsigned  is_registered:1;
418   unsigned  uevent_suppress:1;
419
420      struct semaphore sem; /* semaphore to synchronize calls to
421         * its driver.
422         */
423
424   struct bus_type * bus;  /* type of bus device is on */
425   struct device_driver *driver; /* which driver has allocated this
426          device */
427   void  *driver_data; /* data private to the driver */
428   void  *platform_data; /* Platform specific data, device
429          core doesn't touch it */
430   struct dev_pm_info power;
431
432 #ifdef CONFIG_NUMA
433   int  numa_node; /* NUMA node this device is close to */
434 #endif
435   u64  *dma_mask; /* dma mask (if dma'able device) */
436   u64  coherent_dma_mask;/* Like dma_mask, but for
437            alloc_coherent mappings as
438            not all hardware supports
439            64 bit addresses for consistent
440            allocations such descriptors. */
441
442   struct list_head dma_pools; /* dma pools (if dma'ble) */
443
444   struct dma_coherent_mem *dma_mem; /* internal for coherent mem
445            override */
446   /* arch specific additions */
447   struct dev_archdata archdata;
448
449   spinlock_t  devres_lock;
450   struct list_head devres_head;
451
452   /* class_device migration path */
453   struct list_head node;
454   struct class  *class;
455   dev_t   devt;  /* dev_t, creates the sysfs "dev" */
456   struct attribute_group **groups; /* optional groups */
457
458   void (*release)(struct device * dev);
459 };

有没有发现它们的共性是什么?对,不是很傻很天真,而是很长很复杂。不过不妨把它们看成艺术品,既然是艺术,当然不会让你那么容易的就看懂了,不然怎么称大师称名家。这么想想咱们就会比较的宽慰了,阿Q是鲁迅对咱们80后最大的贡献。

我知道进入了21世纪,最缺的就是耐性,房价股价都让咱们没有耐性,内核的代码也让人没有耐性。不过做为最没有耐性的一代人,还是要平心静气的扫一下上面的结构,我们会发现,struct
bus_type中有成员struct kset drivers 和struct kset devices,同时struct
device中有两个成员struct bus_type * bus和struct device_driver *driver,struct
device_driver中有两个成员struct bus_type * bus和struct klist
klist_devices。先不说什么是klist、kset,光从成员的名字看,它们就是一个完美的三角关系。我们每个人心中是不是都有两个她?一个梦中的她,一个现实中的她。

凭一个男人的直觉,我们可以知道,struct
device中的bus表示这个设备连到哪个总线上,driver表示这个设备的驱动是什么,struct
device_driver中的bus表示这个驱动属于哪个总线,klist_devices表示这个驱动都支持哪些设备,因为这里device是复数,又是list,更因为一个驱动可以支持多个设备,而一个设备只能绑定一个驱动。当然,struct
bus_type中的drivers和devices分别表示了这个总线拥有哪些设备和哪些驱动。

单凭直觉,张钰红不了。我们还需要看看什么是klist、kset。还有上面device和driver结构里出现的kobject结构是什么?作为一个五星红旗下长大的孩子,我可以肯定的告诉你,kobject和kset都是Linux设备模型中最基本的元素,总线、设备、驱动是西瓜,kobjcet、klist是种瓜的人,没有幕后种瓜人的汗水不会有清爽解渴的西瓜,我们不能光知道西瓜的的甜,还要知道种瓜人的辛苦。kobject和kset不会在意自己的得失,它们存在的意义在于把总线、设备和驱动这样的对象连接到设备模型上。种瓜的人也不会在意自己的汗水,在意的只是能不能送出甜蜜的西瓜。

一般来说应该这么理解,整个Linux的设备模型是一个OO的体系结构,总线、设备和驱动都是其中鲜活存在的对象,kobject是它们的基类,所实现的只是一些公共的接口,kset是同种类型kobject对象的集合,也可以说是对象的容器。只是因为C里不可能会有C++里类的class继承、组合等的概念,只有通过kobject嵌入到对象结构里来实现。这样,内核使用kobject将各个对象连接起来组成了一个分层的结构体系,就好像马列主义将我们13亿人也连接成了一个分层的社会体系一样。kobject结构里包含了parent成员,指向了另一个kobject结构,也就是这个分层结构的上一层结点。而kset是通过链表来实现的,这样就可以明白,struct

bus_type结构中的成员drivers和devices表示了一条总线拥有两条链表,一条是设备链表,一条是驱动链表。我们知道了总线对应的数据结构,就可以找到这条总线关联了多少设备,又有哪些驱动来支持这类设备。

那么klist呢?其实它就包含了一个链表和一个自旋锁,我们暂且把它看成链表也无妨,本来在2.6.11内核里,struct
device_driver结构的devices成员就是一个链表类型。这么一说,咱们上面的直觉都是正确的,如果买股票,摸彩票时直觉都这么管用,就不会有咱们这被压扁的一代了。

现在的人都知道,三角关系很难处。那么总线、设备和驱动之间是如何和谐共处那?先说说总线中的那两条链表是怎么形成的。内核要求每次出现一个设备就要向总线汇报,或者说注册,每次出现一个驱动,也要向总线汇报,或者说注册。比如系统初始化的时候,会扫描连接了哪些设备,并为每一个设备建立起一个struct
device的变量,每一次有一个驱动程序,就要准备一个struct
device_driver结构的变量。把这些变量统统加入相应的链表,device 插入devices
链表,driver插入drivers链表。这样通过总线就能找到每一个设备,每一个驱动。然而,假如计算机里只有设备却没有对应的驱动,那么设备无法工作。反过来,倘若只有驱动却没有设备,驱动也起不了任何作用。在他们遇见彼此之前,双方都如同路埂的野草,一个飘啊飘,一个摇啊摇,谁也不知道未来在哪里,只能在生命的风里飘摇。于是总线上的两张表里就慢慢的就挂上了那许多孤单的灵魂。devices开始多了,drivers开始多了,他们像是来自两个世界,devices们彼此取暖,drivers们一起狂欢,但他们有一点是相同的,都只是在等待属于自己的那个另一半。

现在,总线上的两条链表已经有了,这个三角关系三个边已经有了两个,剩下的那个那?链表里的设备和驱动又是如何联系那?先有设备还是先有驱动?很久很久以前,在那激情燃烧的岁月里,先有的是设备,每一个要用的设备在计算机启动之前就已经插好了,插放在它应该在的位置上,然后计算机启动,然后操作系统开始初始化,总线开始扫描设备,每找到一个设备,就为其申请一个struct
device结构,并且挂入总线中的devices链表中来,然后每一个驱动程序开始初始化,开始注册其struct
device_driver结构,然后它去总线的devices链表中去寻找(遍历),去寻找每一个还没有绑定驱动的设备,即struct
device中的struct
device_driver指针仍为空的设备,然后它会去观察这种设备的特征,看是否是他所支持的设备,如果是,那么调用一个叫做device_bind_driver的函数,然后他们就结为了秦晋之好。换句话说,把struct
device中的struct device_driver driver指向这个驱动,而struct device_driver
driver把struct device加入他的那张struct klist
klist_devices链表中来。就这样,bus、device和driver,这三者之间或者说他们中的两两之间,就给联系上了。知道其中之一,就能找到另外两个。一荣俱荣,一损俱损。

但现在情况变了,在这红莲绽放的日子里,在这樱花伤逝的日子里,出现了一种新的名词,叫热插拔。设备可以在计算机启动以后在插入或者拔出计算机了。因此,很难再说是先有设备还是先有驱动了。因为都有可能。设备可以在任何时刻出现,而驱动也可以在任何时刻被加载,所以,出现的情况就是,每当一个struct
device诞生,它就会去bus的drivers链表中寻找自己的另一半,反之,每当一个一个struct
device_driver诞生,它就去bus的devices链表中寻找它的那些设备。如果找到了合适的,那么OK,和之前那种情况一下,调用device_bind_driver绑定好。如果找不到,没有关系,等待吧,等到昙花再开,等到风景看透,心中相信,这世界上总有一个人是你所等的,只是还没有遇到而已。

Linux内核(7) - 设备模型(上)的更多相关文章

  1. Linux内核(8) - 设备模型(下)

    设备模型拍得再玄幻,它也只是个模型,必须得落实在具体的子系统,否则就只能抱着个最佳技术奖空遗恨.既然前面已经以USB子系统的实现分析示例了分析内核源码应该如何入手,那么这里就仍然以USB子系统为例,看 ...

  2. Linux内核系列设备模型(一) Kobject与Kset

    1.Kobject Kobject是设备驱动模型的核心结构,它使所有设备在底层都有统一的接口.在内核注册的kobject对象都会对应sysfs文件系统中的一个目录(目录名称有Kobject结构中k_n ...

  3. 基于tiny4412的Linux内核移植 -- 设备树的展开

    作者信息 作者: 彭东林 邮箱:pengdonglin137@163.com QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本 ...

  4. 基于tiny4412的Linux内核移植 -- 设备树的展开【转】

    转自:https://www.cnblogs.com/pengdonglin137/p/5248114.html#_lab2_3_1 阅读目录(Content) 作者信息 平台简介 摘要 正文 一.根 ...

  5. linux驱动之设备模型

    linux 设备驱动模型 inux2.6提供了新的设备模型:总线.驱动.设备.基本关系简要的概括如下: 驱动核心可以注册多种类型的总线. 每种总线下面可以挂载许多设备.(通过kset devices) ...

  6. 对Linux内核tty设备的一点理解(转)

    虽然一直做嵌入式Linux,宿主机和开发板通信天天都在用tty设备通信,但是其实自己对TTY设备及终端的概念认识几乎是0.对于Linux内核的终端.tty.控制台等概念的认识很模糊.由于在学习的时候碰 ...

  7. 羽夏看Linux内核——引导启动(上)

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.如有好的建议,欢迎反馈.码字不易,如果本篇文章有帮助你的,如有闲钱,可以打赏支持我的创作.如想转载,请把我的转载信息附在文章后面,并 ...

  8. Linux 内核 动态设备

    术语"热插拔"最普遍使用的意义产生于当讨论这样的事实时, 几乎所有的计算机系统现在 能够处理当系统有电时设备的出现或消失. 这非常不同于只是几年前的计算机系统, 那时 程序员知道他 ...

  9. Linux 内核列举设备和驱动

    如果你在编写总线级别的代码, 你可能不得不对所有已经注册到你的总线的设备或驱动进 行一些操作. 它可能会诱惑人直接进入 bus_type 结构中的各种结构, 但是最好使用已经 提供的帮助函数. 为操作 ...

随机推荐

  1. Android中ActionBar及Overflow的显示

    最近在按照Android的API文档学习Android中actionbar的使用,Action bar 最基本的形式,就是为 activity 显示标题,并且在标题左边显示一个 app icon.在这 ...

  2. Command 命令模式 MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  3. 读书笔记-C#中装箱拆箱性能

    前言   最近在看王涛大神的<你必须知道的.NET(第二版)>一书,嗯,首先膜拜一下….     在书中的第五章-品味类型中,对装箱与拆箱一节感触很深,概念本身相信每一个程序猿都不陌生,装 ...

  4. 根据百度API获得经纬度,然后根据经纬度在获得城市信息

    package com.pb.baiduapi; import java.io.BufferedReader; import java.io.IOException; import java.io.I ...

  5. MongoDB学习笔记(五)--复制集 && sharding分片

    主从复制                                                                                       主从节点开启 主节 ...

  6. 【SDN】SDN相关资料--了解一下电信领域的SDN

    SDN相关资料 数据中心架构下ospf bgp如何选择及优缺点? - 数据中心 - 知乎 组播扩展OSPF_百度百科 carrier.huawei.com/cn/products/fixed-netw ...

  7. 从头认识java-特辑-你不知道的main函数

    这一章节我们来讨论一下main函数. 对于这个函数大家都不陌生,并且都习以为常.可是当中有一些东西,还是值得我们去总结的. 1.普通的main package com.ray.test; public ...

  8. mondrian4 kylin saiku 整合踩坑记录

    1 先说了版本: Mondrian 4 .kylin2.2 .saiku 3.15 2 saiku 3.15 使用的xml是基于 mondrian4 的schema的xml.判断是不是mondrian ...

  9. 破解无线网络密码-BT3如何使用1

    一分钟制作 BT3 U盘版 方便,快捷简单 光盘版BT3, 大概694MB,直接刻盘,然后用光盘引导,即可进入bt3,连接为: http://ftp.heanet.ie/mirrors/backtra ...

  10. 搭建一个SpringBoot项目

    1.创建项目 New->Spring Starter Project 2.添加支持 增加对mybatis plus的支持,修改pom.xml,增加如下内容: <dependency> ...