Kyoya Ootori has a bag with n colored balls that are colored with k different
colors. The colors are labeled from 1 to k.
Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore
drawing the last ball of color i + 1 for all i from 1 to k - 1.
Now he wonders how many different ways this can happen.

Input

The first line of input will have one integer k (1 ≤ k ≤ 1000)
the number of colors.

Then, k lines will follow. The i-th
line will contain ci,
the number of balls of the i-th color (1 ≤ ci ≤ 1000).

The total number of balls doesn't exceed 1000.

Output

A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

Sample test(s)
input
3
2
2
1
output
3
input
4
1
2
3
4
output
1680
Note

In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

1 2 1 2 3
1 1 2 2 3 2 1 1 2 3 这道题让我学会了组合数的计算。由于直接用组合数公式会导致结果不准确。如C(100,50)这样,假设用乘一个数除一个数的方法,那么可能会导致不能整除而会发生误差。 思路:若前i种颜色的方法总数是f(i),那么第i+1种颜色的方法总数是f(i+1)=f(i)*C(sum(i+1)-1,a[i+1]-1),当中sum(i+1)是前i+1种颜色的个数总和。
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<string>
#include<map>
#include<algorithm>
using namespace std;
#define ll __int64
#define maxn 1000000007
int a[1600];
ll c[1050][1060];
ll sum; int main()
{
int n,m,i,j,sum1;
for(i=1;i<=1000;i++)c[i][0]=1; for(i=1;i<=1000;i++){
for(j=1;j<=i;j++){
if(i==j)c[i][j]=1;
else if(i>j)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%maxn;
}
} while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sum1=a[1];sum=1;
for(i=2;i<=n;i++){
sum1+=a[i];
//printf("%d %d\n",a[i]-1,sum1-1);
sum=(sum*c[sum1-1][a[i]-1])%maxn;
//sum=(sum*f(a[i]-1,sum1-1))%maxn;
//printf("%lld\n",sum);
}
printf("%I64d\n",sum);
}
return 0;
}

Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls的更多相关文章

  1. Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合

    C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

  2. 找规律 Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks

    题目传送门 /* 找规律,水 */ #include <cstdio> #include <iostream> #include <algorithm> #incl ...

  3. Codeforces Round #309 (Div. 1) B. Kyoya and Permutation 构造

    B. Kyoya and Permutation Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...

  4. Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks 字符串水题

    A. Kyoya and Photobooks Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...

  5. Codeforces Round #309 (Div. 2) -D. Kyoya and Permutation

    Kyoya and Permutation 这题想了好久才写出来,没看题解写出来的感觉真的好爽啊!!! 题目大意:题意我看了好久才懂,就是给你一个序列,比如[4, 1, 6, 2, 5, 3],第一个 ...

  6. Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks【*组合数学】

    A. Kyoya and Photobooks time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. 贪心 Codeforces Round #309 (Div. 2) B. Ohana Cleans Up

    题目传送门 /* 题意:某几列的数字翻转,使得某些行全为1,求出最多能有几行 想了好久都没有思路,看了代码才知道不用蠢办法,匹配初始相同的行最多能有几对就好了,不必翻转 */ #include < ...

  8. C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))

    C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...

  9. Codeforces Round #309 (Div. 2)

    A. Kyoya and Photobooks Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He ha ...

随机推荐

  1. [USACO16OPEN]262144

    传送门啦 其实大家可以先看一下这个题 [USACO16OPEN]248 分析: 数据范围很奇特:n特别,a[i]特别——如果O(N^3)能接受就直接区间DP水过了,但是不行,于是考虑设计一个状态囊括a ...

  2. thinkphp5与thinkphp3.X对比

    原文https://www.cnblogs.com/wupeiky/p/5850108.html 首先声明本章节并非是指导升级旧的项目到5.0,而是为了使用3.X版本的开发者更快的熟悉并上手这个全新的 ...

  3. wpf mvvm模式下的image绑定

    view文件 <Image Grid.Column="2" Width="48" Height="64" Stretch=" ...

  4. linux下Ctrl命令组合

    1.键盘组合键操作 ctrl-c 发送 SIGINT 信号给前台进程组中的所有进程.常用于终止正在运行的程序. ctrl-z 发送 SIGTSTP 信号给前台进程组中的所有进程,常用于挂起一个进程.  ...

  5. LeetCode828. Unique Letter String

    https://leetcode.com/problems/unique-letter-string/description/ A character is unique in string S if ...

  6. CentOS下编译安装python包管理安装工具pip教程

    ubuntu 安装pip 代码如下: apt-get install python-pip 安装requests, pip install requests 对于centos的,直接 yum inst ...

  7. 20165203《Java程序设计》第八周学习总结

    20165203<Java程序设计>第八周学习总结 教材学习内容总结 第12章 进程与线程 进程的完成过程:代码加载.执行至执行完毕 线程:一个进程由多个线程组成. 线程的完成过程:自身的 ...

  8. **IOS自动完成(搜索自动提示)功能实现

    UISearchBar搜索AutoComplete下拉列表搜索提示 http://www.codeios.com/thread-10685-1-1.html 介绍:     在搜索框上加入下拉列表.在 ...

  9. JavaScript工程师都应懂的33个概念

    最近福利发的有点多啊,各种硬干货,小伙伴们是不是觉得很爽啊.Github真的蕴含着各种各样的宝藏,难怪各个大厂也都纷纷贡献自己的代码到Github上. 所以各种干货还是会源源不断的po给大家,觉得有帮 ...

  10. Asp.net Vnext 模块化实现

    概述 本文已经同步到<Asp.net Vnext 系列教程 >中] 在程序中实现模块化可以加快开发效率,通过替换模块实现升级. 架构 vnext 没有 Virtualpathprovide ...