Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls
Kyoya Ootori has a bag with n colored balls that are colored with k different
colors. The colors are labeled from 1 to k.
Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore
drawing the last ball of color i + 1 for all i from 1 to k - 1.
Now he wonders how many different ways this can happen.
The first line of input will have one integer k (1 ≤ k ≤ 1000)
the number of colors.
Then, k lines will follow. The i-th
line will contain ci,
the number of balls of the i-th color (1 ≤ ci ≤ 1000).
The total number of balls doesn't exceed 1000.
A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.
3
2
2
1
3
4
1
2
3
4
1680
In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:
1 2 1 2 3
1 1 2 2 3 2 1 1 2 3 这道题让我学会了组合数的计算。由于直接用组合数公式会导致结果不准确。如C(100,50)这样,假设用乘一个数除一个数的方法,那么可能会导致不能整除而会发生误差。 思路:若前i种颜色的方法总数是f(i),那么第i+1种颜色的方法总数是f(i+1)=f(i)*C(sum(i+1)-1,a[i+1]-1),当中sum(i+1)是前i+1种颜色的个数总和。#include<stdio.h>
#include<string.h>
#include<iostream>
#include<string>
#include<map>
#include<algorithm>
using namespace std;
#define ll __int64
#define maxn 1000000007
int a[1600];
ll c[1050][1060];
ll sum; int main()
{
int n,m,i,j,sum1;
for(i=1;i<=1000;i++)c[i][0]=1; for(i=1;i<=1000;i++){
for(j=1;j<=i;j++){
if(i==j)c[i][j]=1;
else if(i>j)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%maxn;
}
} while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++){
scanf("%d",&a[i]);
}
sum1=a[1];sum=1;
for(i=2;i<=n;i++){
sum1+=a[i];
//printf("%d %d\n",a[i]-1,sum1-1);
sum=(sum*c[sum1-1][a[i]-1])%maxn;
//sum=(sum*f(a[i]-1,sum1-1))%maxn;
//printf("%lld\n",sum);
}
printf("%I64d\n",sum);
}
return 0;
}
Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls的更多相关文章
- Codeforces Round #309 (Div. 2) C. Kyoya and Colored Balls 排列组合
C. Kyoya and Colored Balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...
- 找规律 Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks
题目传送门 /* 找规律,水 */ #include <cstdio> #include <iostream> #include <algorithm> #incl ...
- Codeforces Round #309 (Div. 1) B. Kyoya and Permutation 构造
B. Kyoya and Permutation Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...
- Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks 字符串水题
A. Kyoya and Photobooks Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...
- Codeforces Round #309 (Div. 2) -D. Kyoya and Permutation
Kyoya and Permutation 这题想了好久才写出来,没看题解写出来的感觉真的好爽啊!!! 题目大意:题意我看了好久才懂,就是给你一个序列,比如[4, 1, 6, 2, 5, 3],第一个 ...
- Codeforces Round #309 (Div. 2) A. Kyoya and Photobooks【*组合数学】
A. Kyoya and Photobooks time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- 贪心 Codeforces Round #309 (Div. 2) B. Ohana Cleans Up
题目传送门 /* 题意:某几列的数字翻转,使得某些行全为1,求出最多能有几行 想了好久都没有思路,看了代码才知道不用蠢办法,匹配初始相同的行最多能有几对就好了,不必翻转 */ #include < ...
- C. Kyoya and Colored Balls(Codeforces Round #309 (Div. 2))
C. Kyoya and Colored Balls Kyoya Ootori has a bag with n colored balls that are colored with k diffe ...
- Codeforces Round #309 (Div. 2)
A. Kyoya and Photobooks Kyoya Ootori is selling photobooks of the Ouran High School Host Club. He ha ...
随机推荐
- git ——本地项目上传到git
1.(先进入项目文件夹)通过命令 git init 把这个目录变成git可以管理的仓库 git init 2.把文件添加到版本库中,使用命令 git add .添加到暂存区里面去,不要忘记后面的小数点 ...
- thinkphp5 IIS7.5 隐藏index.php的方法
<?xml version="1.0" encoding="UTF-8"?> <configuration> <system.we ...
- AdvStringGrid 单元格字体颜色、背景颜色
procedure TForm5.Button1Click(Sender: TObject); var I: Integer; begin AdvStringGrid1.RowCount := ;// ...
- Oracle学习笔记:ORA-22992 cannot use LOB locators selected from remote tables
通过DB_LINK访问远程表的时候出现 ORA-22992: cannot use LOB locators selected from remote tables 错误. 原因:因为表中含有clob ...
- 大数据统计分析平台之三、Kibana安装和使用
kibana安装 1.到官网下载kibana: cd /usr/local/software wget https://artifacts.elastic.co/downloads/kibana/ki ...
- mycat性能调优
http://blog.csdn.net/wangshuang1631/article/details/69056070
- RAII
转载:http://www.jellythink.com/archives/101 什么是RAII? RAII是Resource Acquisition Is Initialization的简称,是C ...
- 自动化CI构建工具
hudson/maven jenkins,bamboo, hudson
- bzoj 1202: [HNOI2005]狡猾的商人
我居然用暴力跑过去了... 思路:两个区间合成一个新的区间才会产生冲突, 我们用并查集维护前缀和, 0 - n 个节点分别表示sum[ 0 ] - sum[ n ], d[ i ] 表示 前缀i 和它 ...
- 第一个web程序(ServletRequest , ServletResponse)
一.ServletRequest 1.获取参数的方法(四种) > String getParameter(String name): 根据请求参数的名字, 返回参数值. 若请求参数有多个值(例如 ...