We have an array A of non-negative integers.

For every (contiguous) subarray B = [A[i], A[i+1], ..., A[j]] (with i <= j), we take the bitwise OR of all the elements in B, obtaining a result A[i] | A[i+1] | ... | A[j].

Return the number of possible results.  (Results that occur more than once are only counted once in the final answer.)

Example 1:

Input: [0]
Output: 1
Explanation:
There is only one possible result: 0.

Example 2:

Input: [1,1,2]
Output: 3
Explanation:
The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
These yield the results 1, 1, 2, 1, 3, 3.
There are 3 unique values, so the answer is 3.

Example 3:

Input: [1,2,4]
Output: 6
Explanation:
The possible results are 1, 2, 3, 4, 6, and 7.

Note:

  1. 1 <= A.length <= 50000
  2. 0 <= A[i] <= 10^9

Approach #1: Brute force. [C++] [TEL]

    int subarrayBitwiseORs1(vector<int>& A) {
int len = A.size();
set<int> ans;
for (int i = 0; i < len; ++i) {
for (int j = i; j < len; ++j) {
int temp = 0;
for (int k = i; k <= j; ++k) {
temp |= A[k];
}
ans.insert(temp);
}
} return ans.size();
}

  

Approach #2: DP[ ][ ]. [C++] [TEL]

    int subarrayBitwiseORs2(vector<int>& A) {
int len = A.size();
unordered_set<int> ans(begin(A), end(A));
vector<vector<int>> dp(len, vector<int>(len)); for (int l = 1; l <= len; ++l) {
for (int i = 0; i <= len - l; ++i) {
int j = i + l - 1;
if (l == 1) {
dp[i][j] = A[j];
continue;
} dp[i][j] = dp[i][j-1] | A[j];
ans.insert(dp[i][j]);
}
} return ans.size();
}

  

Approach #3: DP[ ]. [C++] [TEL]

    int subarrayBitwiseORs3(vector<int>& A) {
int len = A.size();
unordered_set<int> ans(begin(A), end(A));
vector<int> dp(A); for (int l = 2; l <= len; ++l) {
for (int i = 0; i <= len - l; ++i) {
ans.insert(dp[i] |= A[i+l-1]);
}
} return ans.size();
}

  

dp[i][j] = dp[i] | dp[i+1] | ..... | dp[j]

dp[i][j] = dp[i][j-1] | A[j]

ans = len(set(dp))

Time complexity: O(n^2)

Space complexity: O(n^2) -> O(n)

Approach #4: DP + Bit. [C++]

    int subarrayBitwiseORs(vector<int>& A) {
unordered_set<int> ans;
unordered_set<int> cur;
unordered_set<int> nxt; for (int a : A) {
nxt.clear();
nxt.insert(a);
for (int c : cur) {
nxt.insert(c | a);
}
cur.swap(nxt);
ans.insert(begin(cur), end(cur));
} return ans.size();
}

  

Approach #5: DP + Bit. [Java]

    public int subarrayBitwiseORs(int[] A) {
Set<Integer> ans = new HashSet<>();
Set<Integer> cur = new HashSet<>(); for (int a : A) {
Set<Integer> nxt = new HashSet<>();
nxt.add(a);
for (int b : cur) {
nxt.add(b | a);
}
ans.addAll(nxt);
cur = nxt;
} return ans.size();
}

  

Approach #6: DP + Bit. [Python]

class Solution(object):
def subarrayBitwiseORs(self, A):
"""
:type A: List[int]
:rtype: int
"""
cur = set()
ans = set() for a in A:
cur = {a | b for b in cur} | {a}
ans |= cur return len(ans)

  

Analysis:

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-898-bitwise-ors-of-subarrays/

898. Bitwise ORs of Subarrays的更多相关文章

  1. [LeetCode] 898. Bitwise ORs of Subarrays 子数组按位或操作

    We have an array A of non-negative integers. For every (contiguous) subarray B = [A[i], A[i+1], ..., ...

  2. 【LeetCode】898. Bitwise ORs of Subarrays 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 相似题目 参考资料 日期 题目地址:htt ...

  3. LC 898. Bitwise ORs of Subarrays

    We have an array A of non-negative integers. For every (contiguous) subarray B = [A[i], A[i+1], ..., ...

  4. [Swift]LeetCode898. 子数组按位或操作 | Bitwise ORs of Subarrays

    We have an array A of non-negative integers. For every (contiguous) subarray B = [A[i], A[i+1], ..., ...

  5. 子序列的按位或 Bitwise ORs of Subarrays

    2018-09-23 19:05:20 问题描述: 问题求解: 显然的是暴力的遍历所有的区间是不可取的,因为这样的时间复杂度为n^2级别的,对于规模在50000左右的输入会TLE. 然而,最后的解答也 ...

  6. LeetCode编程训练 - 位运算(Bit Manipulation)

    位运算基础 说到与(&).或(|).非(~).异或(^).位移等位运算,就得说到位运算的各种奇淫巧技,下面分运算符说明. 1. 与(&) 计算式 a&b,a.b各位中同为 1 ...

  7. 算法与数据结构基础 - 位运算(Bit Manipulation)

    位运算基础 说到与(&).或(|).非(~).异或(^).位移等位运算,就得说到位运算的各种奇淫巧技,下面分运算符说明. 1. 与(&) 计算式 a&b,a.b各位中同为 1 ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

随机推荐

  1. yii2中的rules 自定义验证规则详解

    yii2的一个强大之处之一就是他的Form组件,既方便又安全.有些小伙伴感觉用yii一段时间了,好嘛,除了比tp"难懂"好像啥都没有. 领导安排搞一个注册的功能,这家伙刷刷刷的又是 ...

  2. php调试利器之phpdbg

    信海龙的博客 php调试利器之phpdbg 简介 PHPDBG是一个PHP的SAPI模块,可以在不用修改代码和不影响性能的情况下控制PHP的运行环境. PHPDBG的目标是成为一个轻量级.强大.易用的 ...

  3. phalcon框架安装

    Phalcon学习笔记 - 安装 原创 2014年10月23日 12:20:33 标签: phalcon / phalcon安装 5014 如何学习一个新的框架 1  明白工作原理 2  知道核心思想 ...

  4. git 记住用户名和密码

    git 记住用户名和密码 在使用 git 时,如果用的是 HTTPS 的方式,则每次提交,都会让输入用户名和密码,久而久之,就会感觉非常麻烦,那么该如何解决呢? 1. 使用 SSH,添加 ssh ke ...

  5. Ehcache整合spring配置

    为了提高系统的运行效率,引入缓存机制,减少数据库访问和磁盘IO.下面说明一下ehcache和spring整合配置. 1.   需要的jar包 slf4j-api-1.6.1.jar ehcache-c ...

  6. 手机PC文件传输

    QQ啥的现在直接无法全部退出,很纠结后台运行,时不时的来条消息,明明电脑QQ还开着,越来越流氓了. 服务端代码: <%@ Page Language="C#" %> & ...

  7. string的常用操作

    操作符 1.+:可以把两个字符串加起来 插入 iterator insert(iterator i, const char &ch); basic_string &insert(siz ...

  8. win10 新增删除文件不刷新

    实际上是桌面图标缓存出问题,以下是一个简单动作即可解决问题. 按Win+R键打开“运行”窗口,输入如下命令后按回车键执行: ie4uinit -show 立竿见影,效果同360,魔方等工具软件,可参考 ...

  9. spring boot使用java读取配置文件,DateSource测试,BomCP测试,AnnotationConfigApplicationContext的DataSource注入

    一.配置注解读取配置文件         (1)@PropertySource可以指定读取的配置文件,通过@Value注解获取值   实例:           @PropertySource(val ...

  10. 优秀前端工程师必备: 非常常用的checkbox的骚操作---全选和单选demo

    提要: 前端开发的时候, 经常会遇到表格勾选, 单个勾选判断是否全选的事情.趁着有时间, 总结一下以备不时之需! 就像下面这个栗子: 1 源代码: h5 // 全选框 <input type=& ...