题目描述

在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工业城市和农业城市数目相等。现在国王想把城市分给他的两个儿子,大儿子想知道,他选择一段标号连续的城市作为自己的领地,并把剩下的给弟弟,能够满足两端都是自己城市的 exciting 路径比两端都是弟弟的城市的 exciting 路径数目多的方案数。

输入格式

第一行一个正整数 n n n。
第二行 n n n 个整数依次描述城市的性质,1 1 1 为工业,0 0 0 为农业。
接下来 n−1 n - 1 n−1 行每行两个正整数描述一条道路。

输出格式

输出一个整数表示答案。

样例

样例输入

5
1 0 1 0 1
1 2
1 3
2 4
2 5

样例输出

5

数据范围与提示

n≤100000 n \leq 100000 n≤100000

正解:点分治。

对于每个右端点,我们找出极小的左端点使得在这个区间内大儿子不能获利,显然这是满足单调性的。

然后我们设$A$为两个端点都在区间内的路径数量,$B$为两个端点都在区间外的路径数量,如果$A>B$,那么左端点就可以往右移。

设$C$为两个端点分别在区间内外的答案,我们发现$2A+C>2B+C$与前面的不等式是等价的。

设$sum$为总路径数$*2$,$f[i]$为一个端点为$i$的路径数量,那么$2A+C=\sum_{i=l}^{r}f[i]$,$2B+C=sum-\sum_{i=l}^{r}f[i]$。

然后用点分治来统计一下路径就行了。。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (500005) using namespace std; struct edge{ int nt,to; }g[N];
struct data{ int i,l; }st[N]; int head[N],tong[N],vis[N],dis[N],son[N],sz[N],a[N],n,num,top;
ll f[N],now,sum,ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return q*x;
} il void insert(RG int from,RG int to){
g[++num]=(edge){head[from],to},head[from]=num; return;
} il void getrt(RG int x,RG int p,RG int &rt){
son[x]=,sz[x]=;
for (RG int i=head[x],v;i;i=g[i].nt){
v=g[i].to; if (v==p || vis[v]) continue;
getrt(v,x,rt),sz[x]+=sz[v],son[x]=max(son[x],sz[v]);
}
son[x]=max(son[x],son[]-sz[x]);
if (son[rt]>=son[x]) rt=x; return;
} il void getdis(RG int x,RG int p){
dis[x]=dis[p]+a[x],st[++top]=(data){x,dis[x]},sz[x]=;
for (RG int i=head[x],v;i;i=g[i].nt){
v=g[i].to; if (v==p || vis[v]) continue;
getdis(v,x),sz[x]+=sz[v];
}
return;
} il void calc(RG int rt,RG int p,RG int fg){
top=,getdis(rt,p);
for (RG int i=;i<=top;++i) ++tong[n+st[i].l];
for (RG int i=,res;i<=top;++i)
res=fg*tong[n+(p?a[p]:a[rt])-st[i].l],sum+=res,f[st[i].i]+=res;
for (RG int i=;i<=top;++i) --tong[n+st[i].l]; return;
} il void solve(RG int x,RG int S){
RG int rt=; son[]=S,getrt(x,,rt);
vis[rt]=,dis[rt]=a[rt],calc(rt,,);
for (RG int i=head[rt];i;i=g[i].nt)
if (!vis[g[i].to]) calc(g[i].to,rt,-);
for (RG int i=head[rt];i;i=g[i].nt)
if (!vis[g[i].to]) solve(g[i].to,sz[g[i].to]);
return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("king.in","r",stdin);
freopen("king.out","w",stdout);
#endif
n=gi();
for (RG int i=;i<=n;++i) a[i]=gi()?:-;
for (RG int i=,u,v;i<n;++i)
u=gi(),v=gi(),insert(u,v),insert(v,u);
solve(,n);
for (RG int i=,j=;i<=n;++i){
now+=f[i]; while (j<=i && now<<>sum) now-=f[j++];
ans+=j-;
}
cout<<ans; return ;
}

loj6119 「2017 山东二轮集训 Day7」国王的更多相关文章

  1. LOJ #6119. 「2017 山东二轮集训 Day7」国王

    Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...

  2. 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP

    [LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...

  3. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

  4. 题解 「2017 山东一轮集训 Day7」逆序对

    题目传送门 Description 给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数.答案对 $ 10 ^ 9 + 7 $ 取模. 对于一个长度为 $ n ...

  5. 「2017 山东一轮集训 Day7」逆序对

    题解: 满满的套路题.. 首先显然从大到小枚举 然后每次生成的逆序对是1----(i-1)的 这样做dp是nk的 复杂度太高了 那我们转化一下问题 变成sigma(ai   (ai<i)  )= ...

  6. loj6102 「2017 山东二轮集训 Day1」第三题

    传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # ...

  7. loj6100 「2017 山东二轮集训 Day1」第一题

    传送门:https://loj.ac/problem/6100 [题解] 我们考虑维护从某个端点开始的最长满足条件的长度,如果知道了这个东西显然我们可以用主席树来对每个节点建棵关于右端点的权值线段树, ...

  8. loj #6079. 「2017 山东一轮集训 Day7」养猫【最大费用最大流】

    首先假设全睡觉,然后用费用流考虑平衡要求建立网络流 把1~n的点看作是i-k+1~k这一段的和,连接(i,i+k,1,e[i]-s[i]),表示把i改成吃饭,能对i~i+k-1这一段的点产生影响:然后 ...

  9. LOJ6102「2017 山东二轮集训 Day1」第三题 【min-max容斥,反演】

    题目描述:输入一个大小为\(n\)的集合\(S\),求\(\text{lcm}_{k\in S}f_k\),其中\(f_k\)是第$$个Fibonacci数. 数据范围:\(n\le 5\times ...

随机推荐

  1. C#比较两个字符串的相似度【转】

    原文地址:http://www.2cto.com/kf/201202/121170.html 我们在做数据系统的时候,经常会用到模糊搜索,但是,数据库提供的模糊搜索并不具备按照相关度进行排序的功能. ...

  2. JS数组sort比较函数

    转载:http://www.cnblogs.com/ljchow/archive/2010/06/30/1768683.html 我们知道,数组的sort方法可以对数组元素进行排序,默认是按ASCII ...

  3. winform绑定多张图片

    开发winform程序的时候经常设计到要显示多张图片的问题,其解决思路一般是先遍历文件夹中的所有图片,然后再把这些图片添加到ImageList控件中,最后再绑定显示出来.这里我们介绍两种绑定的方法: ...

  4. SDWebImage实现图片展示、缓存、清除缓存

    1. /* 图片显示 */ [self.imageView sd_setImageWithURL:[NSURL URLWithString:urlString]];                [s ...

  5. 鼓捣phantomjs(二) node.js模块化集成

    著作权所有:http://www.cnblogs.com/zeusro/ 引用(爬虫)不给稿费的,切你jj 追忆似屎年华 在上一篇post(http://www.cnblogs.com/zeusro/ ...

  6. php返回数组后处理(开户成功后弹窗提示)

    1. 在注册的时候,注册成功后经常会弹窗提示自己注册的信息,这类做法需要返回mysql数据库中获取的数组值,返回给前台页面,赋值给弹窗. 2.做法: 返回数组 打印的数组的值 返回数组处理 赋值给弹窗 ...

  7. JS 自定义对象 属性

    js自定义对象 一,概述 在Java语言中,我们可以定义自己的类,并根据这些类创建对象来使用,在Javascript中,我们也可以定义自己的类,例如定义User类.Hashtable类等等. 目前在J ...

  8. jQuery基础(Ajax,load(),getJSON(),getScript(),post(),ajax(),同步/异步请求数据)

    1.使用load()方法异步请求数据   使用load()方法通过Ajax请求加载服务器中的数据,并把返回的数据放置到指定的元素中,它的调用格式为:   load(url,[data],[callba ...

  9. css文字属性

    font-family- css字体:设定时,需考虑浏览器中有无该字体. 比如说“黑体”  “微软雅黑” font-size -css字体大小: 注意度量html单位.例如:font-size:18p ...

  10. HiveSql调优经验

    背景 在刚使用hive的过程中,碰到过很多问题,任务经常需要运行7,8个小时甚至更久,在此记录一下这个过程中,我的一些收获 join长尾 背景 SQL在Join执行阶段会将Join Key相同的数据分 ...