虚树+树形DP


  本题100W的点数……不用虚树真的好吗……

  Orz ZYF

我的感悟:

  dp的过程跟SPOJ 1825 FTOUR2 的做法类似,依次枚举每个子树,从当前子树和之前的部分中各找一条最长(短)路径更新答案,再把这个子树的最短路径加入到x节点中去(之前算过的部分)这样就实现了枚举所有可能的最优情况!而且复杂度很低!避免了两两之间的枚举……

 /**************************************************************
Problem: 3611
User: Tunix
Language: C++
Result: Accepted
Time:7460 ms
Memory:181024 kb
****************************************************************/ //BZOJ 3611
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')sign=-;ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*=sign;
}
/******************tamplate*********************/
const int N=,INF=~0u>>;
typedef long long LL; int n,m,dfn[N],dfs_clock,dep[N],fa[N][],a[N];
LL ans,g[N];
int f[N],_min[N],_max[N],ans1,ans2;
bool v[N]; inline int LCA(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
int t=dep[x]-dep[y];
F(i,,) if(t&(<<i)) x=fa[x][i];
if (x==y) return x;
D(i,,) if(fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return fa[x][];
}
struct graph{
int head[N],to[N<<],next[N<<],len[N<<],cnt;
void add(int x,int y){
to[++cnt]=y; next[cnt]=head[x]; head[x]=cnt;
to[++cnt]=x; next[cnt]=head[y]; head[y]=cnt;
}
void ad(int x,int y){
to[++cnt]=y; next[cnt]=head[x]; head[x]=cnt; len[cnt]=dep[y]-dep[x];
}
void dfs(int x){
dfn[x]=++dfs_clock;
F(i,,) if(dep[x]>=(<<i)) fa[x][i]=fa[fa[x][i-]][i-]; else break;
for(int i=head[x];i;i=next[i])
if(to[i]!=fa[x][]){
fa[to[i]][]=x;
dep[to[i]]=dep[x]+;
dfs(to[i]);
}
}
void DP(int x){
f[x]=v[x]; g[x]=;
_min[x]=v[x] ? : INF;
_max[x]=v[x] ? : -INF;
for(int i=head[x];i;i=next[i]){
int y=to[i];
DP(y);
ans+=(g[x]+f[x]*len[i])*f[y]+g[y]*f[x];
f[x]+=f[y];
g[x]+=g[y]+(LL)len[i]*f[y];
ans1=min(ans1,_min[x]+_min[y]+len[i]);
ans2=max(ans2,_max[x]+_max[y]+len[i]);
_min[x]=min(_min[x],_min[y]+len[i]);
_max[x]=max(_max[x],_max[y]+len[i]);
}
head[x]=;
}
}G1,G2;
inline bool cmp(int a,int b){ return dfn[a]<dfn[b]; }
int st[N],top;
int main(){
// freopen("3611.in","r",stdin);
n=getint();
int x,y;
F(i,,n){
x=getint(); y=getint();
G1.add(x,y);
}
G1.dfs(); int T=getint();
while(T--){
m=getint();
F(i,,m) {a[i]=getint(); v[a[i]]=;}
sort(a+,a+m+,cmp); st[top=]=; G2.cnt=;
ans=; ans1=INF; ans2=-INF;
F(i,,m){
int x=a[i],f=LCA(x,st[top]);
while(dep[f]<dep[st[top]]){
if(dep[f]>=dep[st[top-]]){
G2.ad(f,st[top--]);
if(st[top]!=f) st[++top]=f;
break;
}
G2.ad(st[top-],st[top]); top--;
}
if(st[top]!=x) st[++top]=x;
}
while(--top) G2.ad(st[top],st[top+]);
G2.DP();
printf("%lld %d %d\n",ans,ans1,ans2);
F(i,,m) v[a[i]]=;
}
return ;
}

3611: [Heoi2014]大工程

Time Limit: 60 Sec  Memory Limit: 512 MB
Submit: 273  Solved: 129
[Submit][Status][Discuss]

Description

国家有一个大工程,要给一个非常大的交通网络里建一些新的通道。 
我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上。 
在 2 个国家 a,b 之间建一条新通道需要的代价为树上 a,b 的最短路径。
 现在国家有很多个计划,每个计划都是这样,我们选中了 k 个点,然后在它们两两之间 新建 C(k,2)条 新通道。
现在对于每个计划,我们想知道:
 1.这些新通道的代价和
 2.这些新通道中代价最小的是多少 
3.这些新通道中代价最大的是多少

Input

第一行 n 表示点数。

 接下来 n-1 行,每行两个数 a,b 表示 a 和 b 之间有一条边。
点从 1 开始标号。 接下来一行 q 表示计划数。
对每个计划有 2 行,第一行 k 表示这个计划选中了几个点。
 第二行用空格隔开的 k 个互不相同的数表示选了哪 k 个点。

Output

输出 q 行,每行三个数分别表示代价和,最小代价,最大代价。

 

Sample Input

10
2 1
3 2
4 1
5 2
6 4
7 5
8 6
9 7
10 9
5
2
5 4
2
10 4
2
5 2
2
6 1
2
6 1

Sample Output

3 3 3
6 6 6
1 1 1
2 2 2
2 2 2

HINT

n<=1000000

q<=50000并且保证所有k之和<=2*n 

Source

[Submit][Status][Discuss]

【BZOJ】【3611】【HEOI2014】大工程的更多相关文章

  1. bzoj 3611 [Heoi2014]大工程(虚树+DP)

    3611: [Heoi2014]大工程 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 408  Solved: 190[Submit][Status] ...

  2. bzoj 3611: [Heoi2014]大工程 && bzoj 2286: [Sdoi2011消耗战

    放波建虚树的模板. 大概是用一个栈维护根节点到当前关键点的一条链,把其他深度大于lca的都弹出去. 每次做完记得复原. 还有sort的时候一定要加cmp!!! bzoj 3611 #include&l ...

  3. bzoj 3611: [Heoi2014]大工程 虚树

    题目: 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通道需要的代价为树上 ...

  4. bzoj 3611[Heoi2014]大工程 虚树+dp

    题意: 给一棵树 每次选 k 个关键点,然后在它们两两之间 新建 C(k,2)条 新通道. 求: 1.这些新通道的代价和 2.这些新通道中代价最小的是多少 3.这些新通道中代价最大的是多少 分析:较常 ...

  5. bzoj 3611: [Heoi2014]大工程

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #d ...

  6. BZOJ.3611.[HEOI2014]大工程(虚树 树形DP)

    题目链接 要求的和.最大值.最小值好像都可以通过O(n)的树形DP做,总询问点数<=2n. 于是建虚树就可以了.具体DP见DP()函数,维护三个值sum[],mx[],mn[]. sum[]要开 ...

  7. BZOJ 3611 [Heoi2014]大工程 ——虚树

    虚树第二题.... 同BZOJ2286 #include <map> #include <cmath> #include <queue> #include < ...

  8. 3611: [Heoi2014]大工程

    3611: [Heoi2014]大工程 链接 分析: 树形dp+虚树. 首先建立虚树,在虚树上dp. dp:sum[i]为i的子树中所有询问点之间的和.siz[i]为i的子树中有多少询问点,mn[i] ...

  9. BZOJ2286 [Sdoi2011]消耗战 和 BZOJ3611 [Heoi2014]大工程

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6371  Solved: 2496[Submit][Statu ...

  10. [Bzoj3611][Heoi2014]大工程(虚树)

    3611: [Heoi2014]大工程 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 2000  Solved: 837[Submit][Status ...

随机推荐

  1. 【LOJ】 #2665. 「NOI2013」树的计数

    题解 我们统计深度对于bfs序统计,树结构出现分歧的地方必然是BFS序的最后一段,这个最后一段同时还得是dfs序上连续的一段 如果不是bfs序的最后一段,那么必然下一层会有节点,如果树结构分歧了,那么 ...

  2. HDU 4443 带环树形dp

    思路:如果只有一棵树这个问题很好解决,dp一次,然后再dfs一次往下压求答案就好啦,带环的话,考虑到环上的点不是 很多,可以暴力处理出环上的信息,然后最后一次dfs往下压求答案就好啦.细节比较多. # ...

  3. C# 中从网络上下载文件保存到本地文件

    下面是C#中常用的从Internet上下载文件保存到本地的一些方法,没有太多的技巧. 1.通过  WebClient  类下载文件 WebClient webClient = new WebClien ...

  4. HTTP协议--请求与响应

    1.简介 HTTP 是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990 年提出,经过几年的使用与发展,得到不断地完善和扩展.目前在WWW 中使用的是HT ...

  5. IP、TCP和DNS与HTTP的密切关系

    看了上一篇博文的发表时间,是7月22日,现在是10月22日,已经有三个月没写博客了.这三个月里各种忙各种瞎折腾,发生了很多事情,也思考了很多问题.现在这段时间开始闲下来了,同时该思考的事情也思考清楚了 ...

  6. RTSP 资料

    分享两个不错的播客. http://blog.csdn.net/u010425035/article/details/10410851 http://blog.csdn.net/xiaoyafang1 ...

  7. HDU - 2199 Can you solve this equation? 二分 简单题

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  8. 洛谷——P2083 找人

    P2083 找人 题目背景 无 题目描述 小明要到他的同学家玩,可他只知道他住在某一单元,却不知住在哪个房间.那个单元有N层(1,2……N),每层有M(1,2……M)个房间. 小明会从第一层的某个房间 ...

  9. GNU C __attribute__ 机制简介

    摘要: 在学习linux内核代码及一些开源软件的源码(如:DirectFB),经常可以看到有关__attribute__的相关使用.本文结合自己的学习经历,较为详细的介绍了__attribute__相 ...

  10. Codeforces Round #353 (Div. 2) D. Tree Construction 模拟

    D. Tree Construction 题目连接: http://www.codeforces.com/contest/675/problem/D Description During the pr ...