在逻辑回归中使用mnist数据集。导入相应的包以及数据集。

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print ("MNIST loaded")

使用tensorflow中函数进行逻辑回归的构建。调用softmax函数进行逻辑回归模型的构建;构造损失函数【y*tf.log(actv)】;构造梯度下降训练器;

x = tf.placeholder("float", [None, 784]) #784代表照片像素为28*28 10代表共有十个数字
y = tf.placeholder("float", [None, 10]) # None is for infinite
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# LOGISTIC REGRESSION MODEL
#get the predict number
actv = tf.nn.softmax(tf.matmul(x, W) + b)
# COST FUNCTION
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1))
# OPTIMIZER
learning_rate = 0.01
optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# PREDICTION
pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1))
# ACCURACY
accr = tf.reduce_mean(tf.cast(pred, "float"))
# INITIALIZER
init = tf.global_variables_initializer()

循环五十次,每五次打印一次结果,每次训练取100个样本

training_epochs = 50
batch_size = 100
display_step = 5
# SESSION
sess = tf.Session()
sess.run(init)
# MINI-BATCH LEARNING
for epoch in range(training_epochs):
avg_cost = 0.
num_batch = int(mnist.train.num_examples/batch_size)
for i in range(num_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
feeds = {x: batch_xs, y: batch_ys}
avg_cost += sess.run(cost, feed_dict=feeds)/num_batch
# DISPLAY
if epoch % display_step == 0:
feeds_train = {x: batch_xs, y: batch_ys}
feeds_test = {x: mnist.test.images, y: mnist.test.labels}
train_acc = sess.run(accr, feed_dict=feeds_train)
test_acc = sess.run(accr, feed_dict=feeds_test)
print ("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f"
% (epoch, training_epochs, avg_cost, train_acc, test_acc))
print ("DONE")

tensorflow学习笔记五----------逻辑回归的更多相关文章

  1. tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)

    mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...

  2. Python学习笔记之逻辑回归

    # -*- coding: utf-8 -*- """ Created on Wed Apr 22 17:39:19 2015 @author: 90Zeng " ...

  3. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  4. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  5. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  6. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  7. TensorFlow学习笔记——LeNet-5(训练自己的数据集)

    在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...

  8. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  9. TensorFlow学习笔记10-卷积网络

    卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...

随机推荐

  1. linux 配置内网yum源

    一.yum服务器端配置1.安装FTP软件#yum install vsftpd #service vsftpd start#chkconfig --add vsftpd#chkconfig vsftp ...

  2. 【bzoj3223】Tyvj 1729 文艺平衡树

    题目描述: 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1 输入 ...

  3. springboot(四).配置FastJson自定义消息转化器

    配置FastJson自定义消息转化器 一.fastJson简介 fastJson是阿里巴巴旗下的一个开源项目之一,顾名思义它专门用来做快速操作Json的序列化与反序列化的组件.它是目前json解析最快 ...

  4. 深入浅说服务如何以Jar包的方式发布

    序言 笔者前段时间在使用自研框架NF( 传送门 )开发一个自动模板生成工具之后,想将他发布到Linux下,之前一直使用IDE直接run as运行,在遇到发布的时候考虑过发布为war或者jar,在一番抉 ...

  5. 阿里知识储备之二——junit学习以及android单元测试

    一,junit框架 http://blog.csdn.net/afeilxc/article/details/6218908 详细见这篇博客 juit目前已经可以和maven项目进行集成和测试,而且貌 ...

  6. vue 中 event.stopPropagation() 和event.preventDefault() 使用

    1.event.stopPropagation()方法 这是阻止事件的冒泡方法,不让事件向document上蔓延,但是默认事件任然会执行,当你掉用这个方法的时候,如果点击一个连接,这个连接仍然会被打开 ...

  7. Electron-Vue工程初始化,以及需要掌握的相关知识

    1.安装nodejs 下载地址:http://nodejs.cn/ 需要重启系统 2.安装electron npm install electron -g 3.安装vue npm install vu ...

  8. 测试版和正式版微信小程序共享存储空间问题

    一般习惯将变量存储在小程序的storage缓存中,然后用到的时候再去取.但是有一次我在做小程序相关内容的时候发现,对于苹果手机,测试版本小程序和正式版本小程序的缓存变量是相互通用的.

  9. leetcode-easy-array-31 three sum

    mycode  69.20% class Solution(object): def removeDuplicates(self, nums): """ :type nu ...

  10. pyhton2与pyhton3切换

    ubuntu中默认的Python版本是Python2.X,但是现在Python的最新版本是Python3.X. 那么怎么修改ubutun系统默认的Python解释器呢? 如果没有安装,则使用以下命令安 ...