tensorflow学习笔记五----------逻辑回归
在逻辑回归中使用mnist数据集。导入相应的包以及数据集。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print ("MNIST loaded")
使用tensorflow中函数进行逻辑回归的构建。调用softmax函数进行逻辑回归模型的构建;构造损失函数【y*tf.log(actv)】;构造梯度下降训练器;
x = tf.placeholder("float", [None, 784]) #784代表照片像素为28*28 10代表共有十个数字
y = tf.placeholder("float", [None, 10]) # None is for infinite
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
# LOGISTIC REGRESSION MODEL
#get the predict number
actv = tf.nn.softmax(tf.matmul(x, W) + b)
# COST FUNCTION
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv), reduction_indices=1))
# OPTIMIZER
learning_rate = 0.01
optm = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# PREDICTION
pred = tf.equal(tf.argmax(actv, 1), tf.argmax(y, 1))
# ACCURACY
accr = tf.reduce_mean(tf.cast(pred, "float"))
# INITIALIZER
init = tf.global_variables_initializer()
循环五十次,每五次打印一次结果,每次训练取100个样本
training_epochs = 50
batch_size = 100
display_step = 5
# SESSION
sess = tf.Session()
sess.run(init)
# MINI-BATCH LEARNING
for epoch in range(training_epochs):
avg_cost = 0.
num_batch = int(mnist.train.num_examples/batch_size)
for i in range(num_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
feeds = {x: batch_xs, y: batch_ys}
avg_cost += sess.run(cost, feed_dict=feeds)/num_batch
# DISPLAY
if epoch % display_step == 0:
feeds_train = {x: batch_xs, y: batch_ys}
feeds_test = {x: mnist.test.images, y: mnist.test.labels}
train_acc = sess.run(accr, feed_dict=feeds_train)
test_acc = sess.run(accr, feed_dict=feeds_test)
print ("Epoch: %03d/%03d cost: %.9f train_acc: %.3f test_acc: %.3f"
% (epoch, training_epochs, avg_cost, train_acc, test_acc))
print ("DONE")
tensorflow学习笔记五----------逻辑回归的更多相关文章
- tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)
mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的.但是CNN层数要多一些,网络模型需要自己来构建. 程序比较复杂,我就分成几个部分来叙述. 首先,下载并加载数据: import ...
- Python学习笔记之逻辑回归
# -*- coding: utf-8 -*- """ Created on Wed Apr 22 17:39:19 2015 @author: 90Zeng " ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
- TensorFlow学习笔记——LeNet-5(训练自己的数据集)
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练 ...
- tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...
- TensorFlow学习笔记10-卷积网络
卷积网络 卷积神经网络(Convolutional Neural Network,CNN)专门处理具有类似网格结构的数据的神经网络.如: 时间序列数据(在时间轴上有规律地采样形成的一维网格): 图像数 ...
随机推荐
- UVa 1602 Lattice Animals (STL && 生成n连块 && 无方向形状判重)
题意 : 给定一个 w * h 的 矩阵,在矩阵中找不同n个连通块的个数(旋转,翻转,平移算作一种) 分析 : 这题的关键点有两个 ① 生成n连块并且存储起来(因为题目是多测试用例,如果每一次都重新生 ...
- ubuntu 安装 tar.gz 文件
ubuntu 安装 tar.gz 文件 本文链接:https://blog.csdn.net/caloriesung/article/details/81536144 tar zxvf FileNam ...
- 在cmd上执行关于java的反编译
反编译是指通过对他人软件的目标程序(比如可执行程序)进行“逆向分析.研究”工作,以推导出他人的软件产品所使用的思路.原理.结构.算法.处理过程.运行方法等设计要素,某些特定情况下可能推导出源代码.反编 ...
- (76)深入浅出Mqtt协议
物联网(Internet of Things,IoT)时代机器之间(Machine-to-Machine,M2M)的大规模沟通需要发布/订阅(Publish/Subscribe)模式,轻量级.易扩展的 ...
- [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理
分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...
- es入门--curl的使用
文档介绍: 首先要讲什么是文档,我们中大多是java程序员,java是面向对象的,那么在elasticsearch看来:对象和文档是等价的.只不过这个对象是可以被序列化成key-value形式的jso ...
- 取值函数(getter)和存值函数(setter)
todo get和set关键字
- 把一个树莓派SD卡系统和文件迁移到空SD卡中
1.打开win32diskimager软件读出SD卡树莓派系统和文件到电脑的镜像文件中, 2.使用 SD card formatter 格式化SD卡 3.再用win32diskimager往空SD卡写 ...
- C/C++题库
1.下面的代码输出什么?为什么? void foo(void) { unsigned int a = 6; int b = -20; (a+b > 6)?puts(“>6”):puts(“ ...
- python jieba分词(结巴分词)、提取词,加载词,修改词频,定义词库 -转载
转载请注明出处 “结巴”中文分词:做最好的 Python 中文分词组件,分词模块jieba,它是python比较好用的分词模块, 支持中文简体,繁体分词,还支持自定义词库. jieba的分词,提取关 ...