小白学Python——Matplotlib 学习(2):pyplot 画图
matplotlib.pyplot
是一组命令样式函数,使matplotlib像MATLAB一样工作。每个pyplot
函数都会对图形进行一些更改:例如,创建图形,在图形中创建绘图区域,在绘图区域中绘制一些线条,使用标签装饰图形等。
import matplotlib.pyplot as plt
plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()
您可能想知道为什么x轴的范围是0-3,y轴的范围是1-4。如果为plot()
命令提供单个列表或数组 ,matplotlib假定它是一系列y值,并自动为您生成x值。由于python范围以0开头,因此默认的x向量与y的长度相同,但以0开头。因此x数据为 [0,1,2,3]
。
import matplotlib.pyplot as plt
import numpy as np # evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2) # red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()
import matplotlib.pyplot as plt
import numpy as np data = {'a': np.arange(50),
'c': np.random.randint(0, 50, 50),
'd': np.random.randn(50)}
data['b'] = data['a'] + 10 * np.random.randn(50)
data['d'] = np.abs(data['d']) * 100 plt.scatter('a', 'b', c='c', s='d', data=data)
plt.xlabel('entry a')
plt.ylabel('entry b')
plt.show()
用分类变量绘图
import matplotlib.pyplot as plt
import numpy as np names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100] plt.figure(figsize=(9, 3)) plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()
使用多个图形和轴
import matplotlib.pyplot as plt
import numpy as np def f(t):
return np.exp(-t) * np.cos(2*np.pi*t) t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02) plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k') plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()
使用文本
import matplotlib.pyplot as plt
import numpy as np mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000) # the histogram of the data
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75) plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()
对数和其他非线性轴
import matplotlib.pyplot as plt
import numpy as np from matplotlib.ticker import NullFormatter # useful for `logit` scale # Fixing random state for reproducibility
np.random.seed(19680801) # make up some data in the interval ]0, 1[
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y)) # plot with various axes scales
plt.figure() # linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True) # log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True) # symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthreshy=0.01)
plt.title('symlog')
plt.grid(True) # logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Format the minor tick labels of the y-axis into empty strings with
# `NullFormatter`, to avoid cumbering the axis with too many labels.
plt.gca().yaxis.set_minor_formatter(NullFormatter())
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35) plt.show()
小白学Python——Matplotlib 学习(2):pyplot 画图的更多相关文章
- 小白学Python——Matplotlib 学习(1)
众所周知,通过数据绘图,我们可以将枯燥的数字转换成容易被人们接受的图表,从而让人留下更加深刻的印象.而大多数编程语言都有自己的绘图工具,matplotlib就是基于Python的绘图工具包,使用它我们 ...
- 小白学Python——Matplotlib 学习(3) 函数图形
import matplotlib.pyplot as plt import numpy as np x = np.linspace(-1,1,50) y = 2*x + 1 plt.figure() ...
- 小白学 Python 数据分析(16):Matplotlib(一)坐标系
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(17):Matplotlib(二)基础操作
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(18):Matplotlib(三)常用图表(上)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(19):Matplotlib(四)常用图表(下)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(15):数据可视化概述
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(20):pyecharts 概述
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
- 小白学 Python 数据分析(21):pyecharts 好玩的图表(系列终篇)
人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):P ...
随机推荐
- JavaScript求取水仙花数
一.什么是水仙花数 水仙花数也称为超完全数字不变数.自幂数.阿姆斯壮数.阿姆是特朗数. 水仙花数是指一个三位数,每个位数上数字的3次幂之和等于数字它本身. 水仙花数是自幂数的一种,三位的三次自幂数才叫 ...
- PHP大文件分片上传断点续传实例源码
1.使用PHP的创始人 Rasmus Lerdorf 写的APC扩展模块来实现(http://pecl.php.net/package/apc) APC实现方法: 安装APC,参照官方文档安装,可以使 ...
- UVa 11212 Editing a Book (IDA* && 状态空间搜索)
题意:你有一篇n(2≤n≤9)个自然段组成的文章,希望将它们排列成1,2,…,n.可以用Ctrl+X(剪切)和Ctrl+V(粘贴)快捷键来完成任务.每次可以剪切一段连续的自然段,粘贴时按照顺序粘贴.注 ...
- 使用 nodejs 和 axios 以及 cherrio 爬取天气预报
安装依赖 引入依赖 发送请求 解析请求的返回值 以下代码可以复制直接运行,获得 7 天的天气预报 const axios = require('axios') const cheerio = requ ...
- BZOJ 1022 Luogu P4279 [SHOI2008]小约翰的游戏 (博弈论)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=1022 (luogu) https://www.luogu.org/pro ...
- oracle11g安装补丁升级
检查当前数据库CPU和PSU补丁信息 方法一: 登录数据库,检查DBA_REGISTRY_HIST视图. SYS@orcl> select *from dba_registry_history; ...
- lnmp源码搭建
Nginx工作原理 这里需要结合Apache的工作,对PHP文件处理过程的区别 1:Nginx是通过php-fpm这个服务来处理php文件 2:Apache是通过libphp5.so ...
- winform带你玩转rabbitMQ
http://www.cnblogs.com/dubing/p/4017613.html
- SQLSERVER 和 ORACLE 查询数据库文件大小
SQLSERVER: SQLSERVER一个库的文件分为数据文件(行数据)和日志文件两个文件,详情可以在数据库的属性->文件中查看. 在资源管理器中打开文件所在路径可以直接看到这两个文件 但是, ...
- C++ com 组件 事件 备忘
[ object, uuid(AECE8D0C-F902--A374-ED3A0EBB6B49), dual, nonextensible, pointer_default(unique) ] int ...