传送门

解题思路

  首先将这个模型放到坐标轴上,\(x\)轴表示\(1\),\(y\)轴表示\(0\)。问题就转化成了从\((0,0)\)走到\((n,m)\),每次可以猜测向\(x\)轴或向\(y\)轴,而实际也有一条路线,求猜中的个数的期望。假设\(n<m\)首先如果一直猜\(m\),答案必然为\(m\),那么这是答案的下界。再考虑过\((n,m)\)做一条斜率为\(1\)的直线,如果在直线上,那么猜中的概率其实就为\(\frac{1}{2}\)。,而不在坐标轴上猜中的期望其实就为\(m\)。那么现在就是求走到直线的概率,根据期望的线性,可以考虑直线上每一个点产生的贡献,过这个点的路线就可以用组合数轻松算出了。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
const int N=1000005;
const int MOD=998244353;
typedef long long LL; int n,m,fac[N],inv[N];
int Ans1,Ans2; //LL gcd(LL x,LL y) {
// if(!y) return x;
// return gcd(y,x%y);
//}
//
//struct Data{
// LL x,y;
// Data(LL _x=0,LL _y=0) {x=_x; y=_y;}
// friend Data operator+(const Data A,const Data B){
// Data ret; ret.y=A.y*B.y; ret.x=A.x*B.y+A.y*B.x;
// LL tmp=gcd(ret.x,ret.y); ret.x/=tmp; ret.y/=tmp;
// return ret;
// }
// friend Data operator*(const Data A,const Data B){
// Data ret; ret.x=A.x*B.x; ret.y=A.y*B.y;
// LL tmp=gcd(ret.x,ret.y); ret.x/=tmp; ret.y/=tmp;
// return ret;
// }
//}ans; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int C(int x,int y){
return (LL)fac[x]*inv[y]%MOD*inv[x-y]%MOD;
} int main(){
scanf("%d%d",&n,&m);
if(n>m) swap(n,m); fac[0]=inv[0]=1;
for(int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%MOD;
inv[n+m]=fast_pow(fac[n+m],MOD-2);
for(int i=n+m-1;~i;i--) inv[i]=1ll*inv[i+1]*(i+1)%MOD;
Ans1=1ll*2*m*C(n+m,n)%MOD; Ans2=fast_pow(C(n+m,n)*2%MOD,MOD-2);
for(int i=1;i<=n;i++) {
Ans1=Ans1+1ll*C(n-i+m-i,n-i)*C(i+i,i)%MOD;
Ans1%=MOD;
}
printf("%lld\n",1ll*Ans1*Ans2%MOD);
// ans=ans+Data(1,2)*Data(C(n-i+m-i,n-i)*C(i+i,i),C(n+m,n));
// printf("%lld\n",1ll*ans.x*fast_pow(ans.y,MOD-2)%MOD);
return 0;
}

AT2705 Yes or No(组合数学)的更多相关文章

  1. poj 3734 Blocks 快速幂+费马小定理+组合数学

    题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...

  2. 组合数学or not ---- n选k有重

    模板问题: 1. 取物品 (comb.pas/c/cpp) [问题描述] 现在有n个物品(有可能相同),请您编程计算从中取k个有多少种不同的取法.[输入] 输入文件有两行,第一行包含两个整数n,k(2 ...

  3. 组合数学(全排列)+DFS CSU 1563 Lexicography

    题目传送门 /* 题意:求第K个全排列 组合数学:首先,使用next_permutation 函数会超时,思路应该转变, 摘抄网上的解法如下: 假设第一位是a,不论a是什么数,axxxxxxxx一共有 ...

  4. uestc1888 Birthday Party    组合数学,乘法原理

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=25539#problem/G 题目意思: 有n个人,每个人有一个礼物,每个人能拿 ...

  5. UVA 11076 Add Again 计算对答案的贡献+组合数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  6. POJ3252——Round Number(组合数学)

    Round Numbers DescriptionThe cows, as you know, have no fingers or thumbs and thus are unable to pla ...

  7. HDU4675【GCD of scequence】【组合数学、费马小定理、取模】

    看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...

  8. hdu 4810 Wall Painting (组合数学+二进制)

    题目链接 下午比赛的时候没有想出来,其实就是int型的数分为30个位,然后按照位来排列枚举. 题意:求n个数里面,取i个数异或的所有组合的和,i取1~n 分析: 将n个数拆成30位2进制,由于每个二进 ...

  9. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

随机推荐

  1. spring4.1.8扩展实战之六:注册bean到spring容器(BeanDefinitionRegistryPostProcessor接口)

    本章是<spring4.1.8扩展实战>系列的第六篇,目标是学习如何通过自己写代码的方式,向spring容器中注册bean: 原文地址:https://blog.csdn.net/boli ...

  2. delphi之猥琐的webserver实现

    http://www.birdol.com/cainiaobiancheng/238.html delphi之猥琐的webserver实现 菜鸟编程  十五楼的鸟儿  7年前 (2009-01-01) ...

  3. redis连接报错:MISCONF Redis is configured to save RDB snapshots, but it is currently not able to...

    连接redis报错: MISCONF Redis is configured to save RDB snapshots, but it is currently not able to persis ...

  4. poj3253Fence Repair (Huffman)

    Huffman树:具有n个外部节点(叶子节点)的二叉树 每个外部节点都有一个对应的权值Wi 叶节点带权外部路径长度总和WPL=Wi*Li(i从1到n)最小(权越大的节点里根越进) 构造Huffman树 ...

  5. Linux——通配符

    因为 shell 频繁地使用文件名,所以shell有一个使命令行强大的特性, shell 提供了特殊字符来帮助我们快速指定一组文件名.这些特殊字符叫做通配符.使用通配符(也以文件名代换著称)允许我们依 ...

  6. [Linux] 001 预备知识

    Unix 1965年 MIT,通用电气(GE),AT&T 的贝尔实验室联合开发 项目名称:Multics 目标:开发一种交互式的,具有多道程序处理能力的分时操作系统 后来:贝尔实验室宣布退出 ...

  7. 54-python基础-python3-字符串-字符串类型及其转换

    1-Python3中字符串类型: bytes:二进制 互联网上数据的都是以二进制的方式传输的. str :unicode的呈现形式. 2-Unicode UTF8 ASCII的补充 字符(Charac ...

  8. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...

  9. ubuntu安装supervisor以及使用supervisor启动.net core进程

    1.下载.net core项目ubuntu系统运行容器dotnet      1.版本:dotnet-sdk-2.1.3-linux-x64.tar.gz      2.将下载好的包上传到ubuntu ...

  10. Beta阶段成果展示——第八组

    Beta阶段成果展示 游戏公网IP:http://119.29.32.204/krad.html(欢迎大家测试!) Beta阶段体现在成果上的工作主要为界面美化,玩家引导,按键封闭等等. 本文将以截图 ...