[CF852H]Bob and stages
题意:给出平面上\(n\)个点,要求选出\(k\)个点,使得这些点形成一个凸包,且凸包内部没有点,求最大面积。无解输出\(0\)。
题解:枚举凸包最左的点\(p\),删除所有在\(p\)左边的点,然后把\(p\)定为原点。将所有点按极角排序,相邻两个点之间连边,那么会形成一个星状多边形,合法的凸包一定在这个多边形内部。
先考虑求出这张图的visibility graph,显然合法的凸包所有边都是visibility graph上的边。求法大概是逆时针枚举所有点,对于每个点维护一个队列维护未来可能加入的边,实际上是对于每个点\(i\),维护所有满足\(ij\)在visibility graph上,并且当前还没找到\(k(k>i)\)使得\(jk\)在visibility graph上的\(j\),详见代码。复杂度\(O(E)\)。
考虑在visibility graph上DP。顺时针枚举所有点,设\(f_{i,j,k}\)表示最后一条选取的边为\(i,j\),选了\(k\)条边的最大面积。转移时可以枚举一个\(l\),如果\(i,j\)和\(l,i\)这两条边可以同时存在(不会使得凸包不满足凸性)则可以转移到\(f_{l,i,k+1}\)。朴素DP复杂度\(O(n^3k)\),可以对于每个点将转移出去和进来的边分别排序后(其实根据求visibility graph的过程,这些边是已经排好序的)双指针+前缀和优化,复杂度\(O(n^2k)\)。
总复杂度\(O(n^3k)\)。
#include<bits/stdc++.h>
using namespace std;
const int N = 210;
typedef long long ll;
typedef double db;
#define pb push_back
int gi() {
int x = 0, o = 1;
char ch = getchar();
while((ch < '0' || ch > '9') && ch != '-') {
ch = getchar();
}
if(ch == '-') {
o = -1, ch = getchar();
}
while(ch >= '0' && ch <= '9') {
x = x * 10 + ch - '0', ch = getchar();
}
return x * o;
}
struct point {
int x, y;
db k;
point(int x = 0, int y = 0): x(x), y(y) {
k = atan2(y, x);
}
point operator-(const point &A) const {
return point(x - A.x, y - A.y);
}
ll operator%(const point &A) const {
return 1ll * x * A.y - 1ll * y * A.x;
}
bool operator<(const point &A) const {
return k < A.k;
}
} a[N], p[N];
int n, m, tt;
ll f[N][N][55], mx[55], ans = 0;
queue<int> q[N];
vector<int> E[N], G[N];
void add(int x, int y) {
while(!q[x].empty() && (p[q[x].front()] - p[x]) % (p[y] - p[x]) < 0) {
add(q[x].front(), y), q[x].pop();
}
G[x].pb(y), E[y].pb(x), q[y].push(x);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
cin >> n >> m;
for(int i = 1; i <= n; i++) {
a[i].x = gi(), a[i].y = gi();
}
for(int s = 1; s <= n; s++) {
tt = 0;
for(int i = 1; i <= n; i++) if(a[i].x > a[s].x || (a[i].x == a[s].x && a[i].y > a[s].y)) {
p[++tt] = a[i] - a[s];
}
sort(p + 1, p + tt + 1);
for(int i = 1; i <= tt; i++) {
E[i].clear(), G[i].clear();
while(!q[i].empty()) {
q[i].pop();
}
}
for(int i = 1; i < tt; i++) {
add(i, i + 1);
}
memset(f, 0xc0, sizeof(f));
for(int i = tt; i; i--) {
memset(mx, 0xc0, sizeof(mx));
reverse(E[i].begin(), E[i].end());
int cur = G[i].size() - 1;
for(auto j : E[i]) {
f[i][j][1] = p[j] % p[i];
while(~cur && (p[j] - p[i]) % (p[G[i][cur]] - p[i]) < 0) {
for(int k = 1; k < m; k++) {
mx[k] = max(mx[k], f[G[i][cur]][i][k]);
}
--cur;
}
for(int k = 1; k < m; k++) {
f[i][j][k + 1] = mx[k] + p[j] % p[i];
}
}
}
for(int i = 1; i <= tt; i++)
for(auto j : E[i]) {
ans = max(ans, f[i][j][m - 2]);
}
}
printf("%.2lf\n", 1.0 * ans / 2);
return 0;
}
[CF852H]Bob and stages的更多相关文章
- POJ1704 Georgia and Bob
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9771 Accepted: 3220 Description Georg ...
- 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob
Alice and Bob Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
- bzoj4730: Alice和Bob又在玩游戏
Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...
- Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)
Alice and Bob Time Limit: 1000ms Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...
- AASM rule of scoring sleep stages using EEG signal
Reference: AASM (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Termi ...
- Alice and Bob 要用到辗转相减
Alice and BobTime Limit: 1 Sec Memory Limit: 64 MBSubmit: 255 Solved: 43 Description Alice is a be ...
- sdutoj 2608 Alice and Bob
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2608 Alice and Bob Time L ...
- hdu 4268 Alice and Bob
Alice and Bob Time Limit : 10000/5000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Tota ...
- [翻译]Bob大叔:反思极限编程
译者注: Bob大叔14年后再次谈论极限编程.极限编程经历了14年的风风雨雨后,Bob大叔将会给它怎么样的定义那? 在我手中拿着的一本白皮薄书,在14年前彻底的改变了软件世界.这本书的标题是解析极限编 ...
随机推荐
- 移动端调试 — 安卓机+chrome
移动端开发时,我们常使用chrome自带的模拟器,模拟各种手机设备. 但模拟毕竟是模拟,当开发完毕,使用真机访问页面出现问题时如何调试呢? 下面介绍一种针对Android机的调试方法 1. 在pc和a ...
- nginx用途
Nginx常用来做静态内容服务器和代理服务器,用来放置静态资源或者转发请求给后面的应用服务. 1. Nginx作为静态服务器使用 作为一个Web服务器,其最主要的任务是作为静态服务器使用. 你需要将 ...
- 下载 GitHub 上保存在 AWS 的文件
通过 GitHub 下载文件时,发现很多文件保存在亚马逊的 AWS 上.而国内访问 AWS 的速度很慢,经常会有文件下载失败.常用的解决方案是挂代理,但我这边挂了代理还是很慢,只好找其他办法. AWS ...
- php-fpm的执行方式 (进程管理模式)
php-fpm的进程数可以根据设置分为动态和静态. 静态:直接开启指定数量的php-fpm进程,不再增加或者减少: 动态:开始的时候开启一定数量的php-fpm进程,当请求量变大的时候,动态的增加ph ...
- Python笔记(十二)_文件
文件的打开模式 'r':以只读的方式打开文件(默认) 'w':以写入的方式打开文件,会覆盖已存在的文件 'x':用写入的方式打开文件,如果文件已存在,会抛出异常 'a':用写入的方式打开文件,如果文件 ...
- 剑指offer第二版面试题5:从尾到头打印链表(JAVA版)
题目描述: 输入一个链表,从尾到头打印链表每个节点的值.返回新链表. import java.util.Stack; //定义链表结构 class ListNode { int value; List ...
- SQL标量函数
调用 MS SQL 标量值函数,应该在函数前面加上 "dbo.",否则会报 “不是可以识别的 内置函数名称”错误.例如 DECLARE @WhichDB TINYINT; ...
- php优化方法
代码优化是开发程序和网站必不可少的一步,代码优化好了,可以大大增加程序的运行效率.使网站或程序加载反应更快.用户体验也就会更好.下面就为大家总结了50条PHP代码优化技巧. 1. 用单引号代替双引号来 ...
- IDF-CTF-不难不易的js加密 writeup
题目链接: http://ctf.idf.cn/index.php?g=game&m=article&a=index&id=28 就是这里 → http://ctf.idf.c ...
- java实现mysql数据库从一张表插入数据到另一张表
创建两张表: create table employee( id ), name ), email ), gender ) ); create table copyEmployee( id ), na ...