题意:给出平面上\(n\)个点,要求选出\(k\)个点,使得这些点形成一个凸包,且凸包内部没有点,求最大面积。无解输出\(0\)。

题解:枚举凸包最左的点\(p\),删除所有在\(p\)左边的点,然后把\(p\)定为原点。将所有点按极角排序,相邻两个点之间连边,那么会形成一个星状多边形,合法的凸包一定在这个多边形内部。

先考虑求出这张图的visibility graph,显然合法的凸包所有边都是visibility graph上的边。求法大概是逆时针枚举所有点,对于每个点维护一个队列维护未来可能加入的边,实际上是对于每个点\(i\),维护所有满足\(ij\)在visibility graph上,并且当前还没找到\(k(k>i)\)使得\(jk\)在visibility graph上的\(j\),详见代码。复杂度\(O(E)\)。

考虑在visibility graph上DP。顺时针枚举所有点,设\(f_{i,j,k}\)表示最后一条选取的边为\(i,j\),选了\(k\)条边的最大面积。转移时可以枚举一个\(l\),如果\(i,j\)和\(l,i\)这两条边可以同时存在(不会使得凸包不满足凸性)则可以转移到\(f_{l,i,k+1}\)。朴素DP复杂度\(O(n^3k)\),可以对于每个点将转移出去和进来的边分别排序后(其实根据求visibility graph的过程,这些边是已经排好序的)双指针+前缀和优化,复杂度\(O(n^2k)\)。

总复杂度\(O(n^3k)\)。

#include<bits/stdc++.h>
using namespace std;
const int N = 210;
typedef long long ll;
typedef double db;
#define pb push_back int gi() {
int x = 0, o = 1;
char ch = getchar();
while((ch < '0' || ch > '9') && ch != '-') {
ch = getchar();
}
if(ch == '-') {
o = -1, ch = getchar();
}
while(ch >= '0' && ch <= '9') {
x = x * 10 + ch - '0', ch = getchar();
}
return x * o;
} struct point {
int x, y;
db k;
point(int x = 0, int y = 0): x(x), y(y) {
k = atan2(y, x);
}
point operator-(const point &A) const {
return point(x - A.x, y - A.y);
}
ll operator%(const point &A) const {
return 1ll * x * A.y - 1ll * y * A.x;
}
bool operator<(const point &A) const {
return k < A.k;
}
} a[N], p[N]; int n, m, tt;
ll f[N][N][55], mx[55], ans = 0;
queue<int> q[N];
vector<int> E[N], G[N]; void add(int x, int y) {
while(!q[x].empty() && (p[q[x].front()] - p[x]) % (p[y] - p[x]) < 0) {
add(q[x].front(), y), q[x].pop();
}
G[x].pb(y), E[y].pb(x), q[y].push(x);
} int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
cin >> n >> m;
for(int i = 1; i <= n; i++) {
a[i].x = gi(), a[i].y = gi();
}
for(int s = 1; s <= n; s++) {
tt = 0;
for(int i = 1; i <= n; i++) if(a[i].x > a[s].x || (a[i].x == a[s].x && a[i].y > a[s].y)) {
p[++tt] = a[i] - a[s];
}
sort(p + 1, p + tt + 1);
for(int i = 1; i <= tt; i++) {
E[i].clear(), G[i].clear();
while(!q[i].empty()) {
q[i].pop();
}
}
for(int i = 1; i < tt; i++) {
add(i, i + 1);
}
memset(f, 0xc0, sizeof(f));
for(int i = tt; i; i--) {
memset(mx, 0xc0, sizeof(mx));
reverse(E[i].begin(), E[i].end());
int cur = G[i].size() - 1;
for(auto j : E[i]) {
f[i][j][1] = p[j] % p[i];
while(~cur && (p[j] - p[i]) % (p[G[i][cur]] - p[i]) < 0) {
for(int k = 1; k < m; k++) {
mx[k] = max(mx[k], f[G[i][cur]][i][k]);
}
--cur;
}
for(int k = 1; k < m; k++) {
f[i][j][k + 1] = mx[k] + p[j] % p[i];
}
}
}
for(int i = 1; i <= tt; i++)
for(auto j : E[i]) {
ans = max(ans, f[i][j][m - 2]);
}
}
printf("%.2lf\n", 1.0 * ans / 2);
return 0;
}

[CF852H]Bob and stages的更多相关文章

  1. POJ1704 Georgia and Bob

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9771   Accepted: 3220 Description Georg ...

  2. 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob

    Alice and Bob Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  3. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  4. Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)

    Alice and Bob Time Limit: 1000ms   Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...

  5. AASM rule of scoring sleep stages using EEG signal

    Reference: AASM (2007). The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Termi ...

  6. Alice and Bob 要用到辗转相减

    Alice and BobTime Limit: 1 Sec  Memory Limit: 64 MBSubmit: 255  Solved: 43 Description Alice is a be ...

  7. sdutoj 2608 Alice and Bob

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2608 Alice and Bob Time L ...

  8. hdu 4268 Alice and Bob

    Alice and Bob Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Tota ...

  9. [翻译]Bob大叔:反思极限编程

    译者注: Bob大叔14年后再次谈论极限编程.极限编程经历了14年的风风雨雨后,Bob大叔将会给它怎么样的定义那? 在我手中拿着的一本白皮薄书,在14年前彻底的改变了软件世界.这本书的标题是解析极限编 ...

随机推荐

  1. day07——css布局解决方案之居中布局

     转行学开发,代码100天——2018-03-23 1.水平居中 使用inline-block + text-align方法 先将子框由块级元素改为行内块元素,再通过设置行内块元素居中以实现水平居中 ...

  2. ab工具进行压力测试

    简介与安装 ab:Apache Benchmark,只要我们安装了Apache,就能够在Apache的安装目录中找到它. yum | apt 安装的Apache  ab的目录一般为/usr/bin 也 ...

  3. LeetCode 144. Binary Tree Preorder Traversal 动态演示

    先序遍历的非递归办法,还是要用到一个stack class Solution { public: vector<int> preorderTraversal(TreeNode* root) ...

  4. jQuery DataTables 分页

    HTML:================================================================== <div class="ibox-con ...

  5. hacking 学习站

    综合 idf实验室:http://ctf.idf.cn/ writeup: 部分参见本博 网络信息安全攻防学习平台:http://hackinglab.cn/ writeup: 部分参见本博 WeCh ...

  6. jsp(java server page)

    jsp的组成元素; 1, 指令 page指令 <%@ page ..........%> language---当前页面使用的语言:java import---当前页面引入的类库, 默认是 ...

  7. [Linux] 023 RPM 包校验与文件提取

    1. RPM 包校验 $ rpm -V 已安装的包名 选项 释义 -V (verify) 校验指定 RPM 包中的文件 (1) 验证内容中的 8 个信息的具体内容如下 信息名称 释义 S 文件大小是否 ...

  8. Spring学习(五)--构建Spring Web应用程序

    一.Spring MVC起步 看过猫和老鼠的小伙伴都可以想象Tom猫所制作的捕鼠器:它的目标 是发送一个小钢球,让它经过一系列稀奇古怪的装置,最后触发捕鼠 器.小钢球穿过各种复杂的配件,从一个斜坡上滚 ...

  9. Mybatis开发中前端控制器注解@Controller 引用的类错误

    import org.springframework.web.portlet.ModelAndView; 错误 import org.springframework.web.servlet.Model ...

  10. 贪吃蛇大作战canvas实现(手机触屏操作)--地图逻辑

    //html部分 <!DOCTYPE html><html><head lang="en"> <meta charset="UT ...