python 并发编程 多线程 GIL与多线程
GIL与多线程
有了GIL的存在,同一时刻同一进程中只有一个线程被执行
多进程可以利用多核,但是开销大,而python的多线程开销小,但却无法利用多核优势
1、cpu到底是用来做计算的,还是用来做I/O的? 2、多个cpu,意味着可以有多个核并行完成计算,所以多核提升的是计算性能,cpu越多计算性能越高 3、无论是多核还是单核CPU ,每个cpu一旦遇到I/O阻塞,仍然需要等待,所以多核对I/O操作没什么用处
CPU用来计算
结论:
1、对计算来说,cpu越多越好,但是对于I/O来说,再多的cpu也没用
2、当然对运行一个程序来说,随着cpu的增多执行效率肯定会有所提高(不管提高幅度多大,总会有所提高),这是因为一个程序基本上不会是纯计算或者纯I/O,
所以我们只能相对的去看一个程序到底是计算密集型还是I/O密集型,从而进一步分析python的多线程到底有无用武之地
假设我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
假设我们有四个任务需要处理,处理方式肯定是要玩出并发的效果,解决方案可以是:
方案一:开启四个进程
方案二:一个进程下,开启四个线程
单核情况下,分析结果:
如果四个任务是计算密集型,没有多核来并行计算,方案一徒增了创建进程的开销,方案二胜
如果四个任务是I/O密集型,方案一创建进程的开销大,且进程的切换速度远不如线程,方案二胜
现在大部分的软件都是IO密集型,所以开多线程
多核情况下,分析结果:
如果四个任务是计算密集型,多核意味着并行计算,在python中一个进程中同一时刻只有一个线程执行用不上多核,方案一胜
如果四个任务是I/O密集型,再多的核也解决不了I/O问题,方案二胜
结论:
现在的计算机基本上都是多核,python对于计算密集型的任务开多线程的效率并不能带来多大性能上的提升,甚至不如串行(没有大量切换),但是,对于IO密集型的任务效率还是有显著提升的。
多线程性能测试
如果并发的多个任务是计算密集型:多进程效率高 多进程耗时17秒
from multiprocessing import Process
import os
import time def work():
res = 0
for i in range(100000000):
res *= i if __name__ == '__main__':
l = []
print(os.cpu_count()) # 查看主机是CPU多少核
start=time.time()
for i in range(4):
p = Process(target=work) # 多进程耗时17秒
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start)) '''
4核
run time is 17.621007680892944
'''
多线程耗时28秒
from threading import Thread
import os
import time def work():
res = 0
for i in range(100000000):
res *= i if __name__ == '__main__':
l = []
print(os.cpu_count()) # 查看主机是CPU多少核
start=time.time()
for i in range(4):
p = Thread(target=work) # 多线程耗时28秒
l.append(p)
p.start()
for p in l:
p.join()
stop=time.time()
print('run time is %s' %(stop-start)) '''
4核
run time is 28.117608308792114
'''
如果并发的多个任务是I/O密集型:多线程效率高
模拟IO密集型 time.sleep等待
多线程耗时2秒
线程来回切换,遇到IO切换到另外一个线程
# IO密集型:用多线程
from threading import Thread
import os
import time def work():
time.sleep(2) if __name__ == '__main__':
l = []
print(os.cpu_count())
start=time.time()
for i in range(400):
p = Thread(target=work) #多线程耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop = time.time()
print('run time is %s' %(stop-start)) '''
4核
run time is 2.0911200046539307
'''
多进程耗时42秒多
from multiprocessing import Process
import os
import time def work():
time.sleep(2) if __name__ == '__main__':
l = []
print(os.cpu_count())
start = time.time()
for i in range(400):
p = Process(target=work) #多进程耗时2s多
l.append(p)
p.start()
for p in l:
p.join()
stop = time.time()
print('run time is %s' %(stop-start)) '''
4
run time is 42.8494508266449
'''
应用:
多线程用于IO密集型,如socket,爬虫,web
多进程用于计算密集型,如金融分析
python 并发编程 多线程 GIL与多线程的更多相关文章
- Python - 并发编程,多进程,多线程
传送门 https://blog.csdn.net/jackfrued/article/details/79717727 在此基础上实践和改编某些点 1. 并发编程 实现让程序同时执行多个任务也就是常 ...
- python并发编程之多进程、多线程、异步、协程、通信队列Queue和池Pool的实现和应用
什么是多任务? 简单地说,就是操作系统可以同时运行多个任务.实现多任务有多种方式,线程.进程.协程. 并行和并发的区别? 并发:指的是任务数多余cpu核数,通过操作系统的各种任务调度算法,实现用多个任 ...
- python并发编程之多进程、多线程、异步和协程
一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行 ...
- Python并发编程二(多线程、协程、IO模型)
1.python并发编程之多线程(理论) 1.1线程概念 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程(流水线的工作需要电源,电源就相当于 ...
- python并发编程&多线程(二)
前导理论知识见:python并发编程&多线程(一) 一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性 官网链 ...
- python 并发编程 多线程 目录
线程理论 python 并发编程 多线程 开启线程的两种方式 python 并发编程 多线程与多进程的区别 python 并发编程 多线程 Thread对象的其他属性或方法 python 并发编程 多 ...
- python并发编程——多线程
编程的乐趣在于让程序越来越快,这里将给大家介绍一个种加快程序运行的的编程方式--多线程 1 著名的全局解释锁(GIL) 说起python并发编程,就不得不说著名的全局解释锁(GIL)了.有兴趣的同 ...
- Python并发编程系列之多线程
1 引言 上一篇博文详细总结了Python进程的用法,这一篇博文来所以说Python中线程的用法.实际上,程序的运行都是以线程为基本单位的,每一个进程中都至少有一个线程(主线程),线程又可以创建子线程 ...
- python并发编程&多线程(一)
本篇理论居多,实际操作见: python并发编程&多线程(二) 一 什么是线程 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一 ...
- Python并发编程04 /多线程、生产消费者模型、线程进程对比、线程的方法、线程join、守护线程、线程互斥锁
Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线程join.守护线程.线程互斥锁 目录 Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线 ...
随机推荐
- spark读取hbase(NewHadoopAPI 例子)
package cn.piesat.controller import java.text.{DecimalFormat, SimpleDateFormat}import java.utilimpor ...
- SQL SERVER 2008 设置字段默认值为当前时间
在某些情况下需要对某条记录添加上时间戳,比如用户注册,需要记录用户的注册时间,在SQL SERVER 2008中可以通过 1. 添加新字段 2. 数据类型设置为smalldatetime 3. 默认值 ...
- springmvc手动渲染jsp
因为需要MockHttpServletResponse对象来得到输出的内容,要引入的包 <dependency> <groupId>org.springframework< ...
- 什么是弹性盒子 ( Flex Box)?
㈠什么是弹性盒子? 弹性盒子是 CSS3 的一种新的布局模式.引入弹性盒布局模型的目的是提供一种更加有效的方式来对一个容器中的子元素进行排列.对齐和分配空白空间. 弹性盒子由弹性容器(Flex con ...
- UVA 10491 Cows and Cars (全概率公式)
#include<bits/stdc++.h> #include<stdio.h> #include<iostream> #include<cmath> ...
- TensorFlow使用记录 (三): Learning Rate Scheduling
file: tensorflow/python/training/learning_rate_decay.py 参考:tensorflow中常用学习率更新策略 神经网络中通过超参数 learning ...
- 18.Python格式化字符串(格式化输出)
Python 提供了“%”对各种类型的数据进行格式化输出,例如如下代码: price = 108 print ("the book's price is %s" % price) ...
- Android_(传感器)获取手机中的传感器
传感器是一种检测装置,能够感受被测量的信息,并能将检测和感受到的信息按一定规律变换成电信号或其它所需形式的信息输出 Android操作系统中内置了很多的传感器(物理装置),能够探测.感受外界的信号.物 ...
- 计算机网络&http学习笔记持续整理
http不常见状态码: 204: 请求处理成功,但是没有资源可返回. 206: 只返回请求资源的某一部分(客户端只想请求某一部分),响应报文中包含由Content-Range指定范围的实体内容. 30 ...
- Mac开发如何处理键盘事件
Mac上输入与手机输入的不同是,Mac需要处理更多的键盘交互,因为Mac上的键盘输入会有多种快捷键组合. 代理方法处理 NSTextField #pragma mark - NSTextFieldDe ...