从MAP角度理解神经网络训练过程中的正则化
在前面的文章中,已经介绍了从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化,本次我们从最大后验概率点估计(MAP,maximum a posteriori point estimate)的角度来理解神经网络中十分重要的weight decay正则化方法.
前面的文章中讲到了梯度下降法可以从最大似然概率估计(ML)的角度来理解,最大似然是一种典型的频率统计方法,还有一种非常不同的贝叶斯统计方法(具体的区别请参考花书).由于贝叶斯统计方法很多时候是复杂不易于处理的,因此我们更想要一种类似与ML的点估计方法.而MAP正是一种点估计的近似贝叶斯估计方法.MAP选择使得后验概率最大的点作为最优估计,定义如下:\[ \boldsymbol{\theta}_{MAP} = \underset{\boldsymbol{\theta}}{argmax}p(\boldsymbol{\theta}|x) = \underset{\boldsymbol{\theta}}{argmax}log(x|\boldsymbol{\theta})+logp(\boldsymbol{\theta})\]
上式右边\(log(x|\boldsymbol{\theta})\)项正是对数最大似然部分,而\(logp(\boldsymbol{\theta})\)项是先验概率部分.
相较于最大似然估计,MAP多了先验概率部分,而这部分是无法从训练样本中得到的,利用先验概率部分可以起到减小泛化误差的作用.
例如,将先验概率设为权重\(\boldsymbol{w}\)符合均值为0,方差为\(\frac{1}{\lambda}I^{2}\)的高斯分布,则上式中的先验概率项,就可化为形如\(\lambda w^{T}w\)的L2正则化项.
MAP方法提供了一种设计复杂的可解释的正则化方法的直接途径.
从MAP角度理解神经网络训练过程中的正则化的更多相关文章
- 从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化
从有约束条件下的凸优化角度思考神经网络训练过程中的L2正则化 神经网络在训练过程中,为应对过拟合问题,可以采用正则化方法(regularization),一种常用的正则化方法是L2正则化. 神经网络中 ...
- (转)理解YOLOv2训练过程中输出参数含义
最近有人问起在YOLOv2训练过程中输出在终端的不同的参数分别代表什么含义,如何去理解这些参数?本篇文章中我将尝试着去回答这个有趣的问题. 刚好现在我正在训练一个YOLOv2模型,拿这个真实的例子来讨 ...
- 理解YOLOv2训练过程中输出参数含义
原英文地址: https://timebutt.github.io/static/understanding-yolov2-training-output/ 最近有人问起在YOLOv2训练过程中输出在 ...
- 练习推导一个最简单的BP神经网络训练过程【个人作业/数学推导】
写在前面 各式资料中关于BP神经网络的讲解已经足够全面详尽,故不在此过多赘述.本文重点在于由一个"最简单"的神经网络练习推导其训练过程,和大家一起在练习中一起更好理解神经网络训 ...
- TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层 二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元.也就是让 ...
- tensorflow训练过程中内存溢出
罪魁祸首是训练过程中给模型传值时的如下语句:
- 深度学习训练过程中的学习率衰减策略及pytorch实现
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...
- map在遍历数据的过程中删除数据不出错
// Iterator<Map.Entry<String,Long>> entries = Map.entrySet().iterator(); ...
- 使用tensorflow下的GPU加速神经网络训练过程
下载CUDA8.0,安装 下载cuDNN v5.1安装.放置环境变量等. 其他版本就不装了.不用找其他版本的关系. 使用tensorflow-gpu1.0版本. 使用keras2.0版本. 有提示的. ...
随机推荐
- poj3728 The merchant[倍增]
给一棵点带权树,$q$次询问,问树上$x$到$y$路径上,两点权之差(后面的减去前面的)的最大值. 这个是在树链上找点,如果沿路径的最小值在最大值之前出现那肯定答案就是$maxx-minx$,但是反之 ...
- PM、RD、QA、OP、CM、EPG 英文缩写是什么意思?
1.PM: Product Manager,产品经理,又称品牌经理.举凡产品从创意到上市,所有相关的研发.调研.生产.编预算.广告.促销活动等等,都由产品经理掌控. 2.RD: Research an ...
- 关于reverse()和sort()方法的返回值问题
关于reverse()和sort()方法的返回值问题 先说结论:reverse()和sort()方法的返回值并不是当前步骤排序后的数组,而是数组的引用. 展示如下: var arr = [2, ...
- Redis的部署使用文档
Redis的部署使用文档 简述: redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符 串).list(链表).set( ...
- 红帽Linux故障定位技术详解与实例(1)
红帽Linux故障定位技术详解与实例(1) 2011-09-28 14:26 圈儿 BEAREYES.COM 我要评论(0) 字号:T | T 在线故障定位就是在故障发生时, 故障所处的操作系统环境仍 ...
- 几种最常见的js array操作方法及示例
1. 序言 操作array可谓前端最基础的工作,无论是从接口中取的数据,还是筛选数据,或者是添加按钮权限等等操作,array都是绕不开的东西.array的操作很多,初学者十分容易搞混,不是很熟练的情况 ...
- nginx实现商品详情页的缓存
- Socket 对象(内建)方法
函数 描述 服务器端套接字 s.bind() 绑定地址(host,port)到套接字, 在AF_INET下,以元组(host,port)的形式表示地址. s.listen() 开始TCP监听.back ...
- Flash大文件断点续传解决方案
核心原理: 该项目核心就是文件分块上传.前后端要高度配合,需要双方约定好一些数据,才能完成大文件分块,我们在项目中要重点解决的以下问题. * 如何分片: * 如何合成一个文件: * 中断了从哪个分片开 ...
- TTTTTTTTTTT 400D Dima and Bacteria 细菌 最短路
题意: 题目大意:给出n,m和k,表示有n个细菌,m种仪器和k种细菌,给出k种细菌的数量ci,然后每个细菌按照种类排成一排(所以有第i种细菌的序号从∑(1≤j≤i-1)cj + 1 到∑(1≤j≤i) ...