题目如下:

You have N gardens, labelled 1 to N.  In each garden, you want to plant one of 4 types of flowers.

paths[i] = [x, y] describes the existence of a bidirectional path from garden x to garden y.

Also, there is no garden that has more than 3 paths coming into or leaving it.

Your task is to choose a flower type for each garden such that, for any two gardens connected by a path, they have different types of flowers.

Return any such a choice as an array answer, where answer[i] is the type of flower planted in the (i+1)-th garden.  The flower types are denoted 1, 2, 3, or 4.  It is guaranteed an answer exists.

Example 1:

Input: N = 3, paths = [[1,2],[2,3],[3,1]]
Output: [1,2,3]

Example 2:

Input: N = 4, paths = [[1,2],[3,4]]
Output: [1,2,1,2]

Example 3:

Input: N = 4, paths = [[1,2],[2,3],[3,4],[4,1],[1,3],[2,4]]
Output: [1,2,3,4]

Note:

  • 1 <= N <= 10000
  • 0 <= paths.size <= 20000
  • No garden has 4 or more paths coming into or leaving it.
  • It is guaranteed an answer exists.

解题思路:可供选的花的种类只有[1,2,3,4]四种,对于任意一个待种植的花园,只需要判断相邻的花园是否已经种植花卉。如果种植了,把已种植的种类从可供选择的列表中去除,最后在剩余的种类中任选一个即可。

代码如下:

class Solution(object):
def gardenNoAdj(self, N, paths):
"""
:type N: int
:type paths: List[List[int]]
:rtype: List[int]
"""
res = [0] * (N+1)
res[1] = 1
dic = {}
for v1,v2 in paths:
dic[v1] = dic.setdefault(v1,[]) + [v2]
dic[v2] = dic.setdefault(v2,[]) + [v1]
for i in range(2,N+1):
if i not in dic:
res[i] = 1
else:
choice = [1,2,3,4]
for neibour in dic[i]:
if res[neibour] == 0:
continue
else:
if res[neibour] in choice:
inx = choice.index(res[neibour])
del choice[inx]
res[i] = choice[0]
return res[1:]

【leetcode】1042. Flower Planting With No Adjacent的更多相关文章

  1. 【LeetCode】1042. Flower Planting With No Adjacent 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 图 日期 题目地址:https://leetcode ...

  2. 【Leetcode_easy】1042. Flower Planting With No Adjacent

    problem 1042. Flower Planting With No Adjacent 参考 1. Leetcode_easy_1042. Flower Planting With No Adj ...

  3. 1042. Flower Planting With No Adjacent

    题意: 本题题意为: 寻找一个花园的涂色方案,要求 1.花园和花园之间,不能有路径连接的,不能涂成相同颜色的 一共有4中颜色,花园和花园之间,至多有三条路径 我菜了 - - ,又没做出来.. 看答案 ...

  4. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  5. 【Leetcode】Pascal&#39;s Triangle II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...

  6. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

  7. 27. Remove Element【leetcode】

    27. Remove Element[leetcode] Given an array and a value, remove all instances of that value in place ...

  8. 【刷题】【LeetCode】007-整数反转-easy

    [刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接-空 007-整数反转 方法: 弹出和推入数字 & 溢出前进行检查 思路: 我们可以一次构建反转整数的一位 ...

  9. 【刷题】【LeetCode】000-十大经典排序算法

    [刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接 000-十大经典排序算法

随机推荐

  1. VMware 虚拟化编程(11) — VMware 虚拟机的全量备份与增量备份方案

    目录 目录 前文列表 全量备份数据的获取方式 增量备份数据的获取过程 前文列表 VMware 虚拟化编程(1) - VMDK/VDDK/VixDiskLib/VADP 概念简析 VMware 虚拟化编 ...

  2. jmeter之关联操作

    测试接口过程中,常常会遇到这样的一个情况:上一个请求返回的数据,另外一个接口需要要使用.那么,使用Jmeter操作时我们常常可以用“关联”来实现. 以接口“登录”和“金币充值”为例:即在做“金币充值” ...

  3. Java 与 C++ 的比较

    参考 Java 中,一切皆是类 Java 中,所有数据或方法都要放在类中.如果想获得与全局函数等价的功能,可将static方法和static数据放在类里.而 C++ 中有 struct 结构.enum ...

  4. Altium Designer chapter9总结

    改善系统的信号完整性和电磁兼容性需要注意如下: (1)系统电源尽量使用稳压输出. (2)高速期间器件与低俗器件隔离,避免低速器件影响高速器件. (3)模拟模块部分与数字模块部分分离. (4)为器件就近 ...

  5. 20191105 《Spring5高级编程》笔记-【目录】

    背景 开始时间:2019/09/18 21:30 Spring5高级编程 版次:2019-01-01(第5版) Spring5最新版本:5.1.9 CURRENT GA 官方文档 Spring Fra ...

  6. 知识点C++

    比较2个字符串的大小…… s1=s2,strcmp(s1,s2) == ; s1>s2, strcmp(s1,s2) == ; s1<s2, strcmp(s1,s2) == -; str ...

  7. ceph部署-常用命令

    常用命令:1.ceph healthceph -s 2.ceph osd treeceph osd lspoolsceph osd pool [poolname] rbd pg_numceph osd ...

  8. WPF ControlTemplate

    ControlTemplate:控件模板,顾名思义也就是定制特定的控件供公共调用,有点类似WinForm中对一些通用控件进行重写使用. ControlTemplate:控件模板主要有两个重要属性:Vi ...

  9. hdu-2819.swap(二分匹配 + 矩阵的秩基本定理)

    Swap Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  10. Lpl and Energy-saving Lamps

    During tea-drinking, princess, amongst other things, asked why has such a good-natured and cute Drag ...