题意:给一个数组,每次给 l ,r, p, k,问区间 [l, r] 的数与 p 作差的绝对值的第 k 小,这个绝对值是多少

分析:首先我们先分析单次查询怎么做:

题目给出的数据与多次查询已经在提示着我们在用数据结构去解决这个问题,对于常见的处理区间的数据结构首选线段树啦:

我觉得这道题的关键在于此:我们需要去二分答案ans,  为什么呢? 我们这样观察 ,对于 | p-a[i] | <= ans  等于 p-ans<=a[i] <=p+ans   那问题就转化为查询[L,R] 区间里面在[p-ans,p+ans] 范围的a[i] 有多少个  。这显然是到主席树的题目;

我们明白主席树的原理是多颗权值线段树 , 那我们就把a[i]当成下标,权值为出现的次数,那我们就是查询[L,R] 编号是权值线段树里面[p-ans,p+ans] 范围的a[i] 有多少个 。

主席树:

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+;
int tot;
int lson[N],rson[N],sum[N],tr[N];
void build(int &rt,int l,int r){
rt=++tot;
if(l==r) return ;
int mid=(l+r)>>;
build(lson[rt],l,mid);
build(rson[rt],mid+,r);
}
void updata(int root,int &rt,int p,int l,int r){
rt=++tot;
lson[rt]=lson[root],rson[rt]=rson[root];
sum[rt]=sum[root]+;
if(l==r) return ;
int mid=(l+r)>>;
if(p<=mid) updata(lson[root],lson[rt],p,l,mid);
else updata(rson[root],rson[rt],p,mid+,r);
}
int query(int rt_,int rt,int L,int R,int l,int r){
if(l<=L&&R<=r){
return sum[rt_]-sum[rt];
}
int mid=(L+R)>>;
int ans=;
if(l<=mid)
ans+=query(lson[rt_],lson[rt],L,mid,l,r);
if(mid<r)
ans+=query(rson[rt_],rson[rt],mid+,R,l,r);
return ans;
}
int main(){
int _;scanf("%d",&_);
while(_--){
int n,m;scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
{
int x;scanf("%d",&x);
updata(tr[i-],tr[i],x,,N);
}
int T=;
for(int i=;i<=m;i++){
int L,R,p,k; scanf("%d%d%d%d",&L,&R,&p,&k);
L^=T,R^=T,p^=T,k^=T;
int LL=,RR=1e6,ans=;
while(LL<=RR){
int mid=(LL+RR)>>;
int l=max(,p-mid);
int r=min(N,p+mid);
if(query(tr[R],tr[L-],,N,l,r)>=k){
RR=mid-;ans=mid;
}
else LL=mid+;
}
T=ans;
printf("%d\n",ans);
} }
return ;
}

权值线段树的做法:

要解决的问题依然没有变;

线段树的每个节点都存着对应区间有序的序列,比如{5,1,2,3,4} ,对于这样的一个序列,线段树的根节点表示的是区间[1,5] 节点里面存有序列{1,2,3,4,5} 那我们查询p-ans<=a[i] <=p+ans  ,就二分{1,2,3,4,5}这个有序的序列有多少个大于p+ans,多少个

大于p-ans-1,在相减;这钟线段树,真的是前所未闻........

#include<bits/stdc++.h>

using namespace std;
const int N=1e5+;
vector<int>v[N];
vector<int>::iterator it;
int a[N];
void build(int l,int r,int rt){
v[rt].clear();
for(int i=l;i<=r;i++)
v[rt].push_back(a[i]);
sort(v[rt].begin(),v[rt].end());
if(l==r) return ;
int mid=(l+r)>>;
build(l,mid,rt<<);
build(mid+,r,rt<<|);
}
int query(int L,int R,int rt,int l,int r,int val){
if(l<=L&&R<=r){
it=upper_bound(v[rt].begin(),v[rt].end(),val);
return it-v[rt].begin();
}
int ans=;
int mid=(L+R)>>;
if(l<=mid)
ans+=query(L,mid,rt<<,l,r,val);
if(mid<r)
ans+=query(mid+,R,rt<<|,l,r,val);
return ans;
}
int main(){
int _; scanf("%d",&_);
while(_--){
int n,m; scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
build(,n,);
int L1=,R1=,p1=,k1=;
int T=;
for(int i=;i<=m;i++){
int L,R,p,k;
scanf("%d%d%d%d",&L,&R,&p,&k);
L^=T,R^=T,p^=T,k^=T;
int LL=,RR=1e6,ans=;
while(LL<=RR){
int mid=(LL+RR)>>;
int K=query(,n,,L,R,p+mid)-query(,n,,L,R,p-mid-);
if(K>=k) {RR=mid-;ans=mid;}
else LL=mid+;
}
printf("%d\n",ans);
T=ans;
}
}
return ;
}

HDU6621 K-th Closest Distance 第 k 小绝对值(主席树(统计范围的数有多少个)+ 二分 || 权值线段树+二分)的更多相关文章

  1. 【bzoj3065】带插入区间K小值 替罪羊树套权值线段树

    题目描述 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理性愉悦一下,查询区间k小值.他每次向它的随从伏特提出 ...

  2. 【BZOJ3065】带插入区间K小值 替罪羊树+权值线段树

    [BZOJ3065]带插入区间K小值 Description 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理 ...

  3. 3065: 带插入区间K小值_树套树_替罪羊树_权值线段树

    经过周六一天,周一3个小时的晚自习,周二2个小时的疯狂debug,终于凭借自己切掉了这道树套树题. Code: #include <cstdio> #include <algorit ...

  4. BZOJ 3110 ZJOI 2013 K大数查询 树套树(权值线段树套区间线段树)

    题目大意:有一些位置.这些位置上能够放若干个数字. 如今有两种操作. 1.在区间l到r上加入一个数字x 2.求出l到r上的第k大的数字是什么 思路:这样的题一看就是树套树,关键是怎么套,怎么写.(话说 ...

  5. 动态求区间K大值(权值线段树)

    我们知道我们可以通过主席树来维护静态区间第K大值.我们又知道主席树满足可加性,所以我们可以用树状数组来维护主席树,树状数组的每一个节点都可以开一颗主席树,然后一起做. 我们注意到树状数组的每一棵树都和 ...

  6. BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

  7. 【bzoj3110】[Zjoi2013]K大数查询 权值线段树套区间线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  8. 区间第k大问题 权值线段树 hdu 5249

    先说下权值线段树的概念吧 权值平均树 就是指区间维护值为这个区间内点出现次数和的线段树 用这个加权线段树 解决第k大问题就很方便了 int query(int l,int r,int rt,int k ...

  9. [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)

    [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...

随机推荐

  1. CentOS 7.6 RPM方式安装Oracle19c的过程

    1. 下载需要的安装包: 1.1 preinstall http://yum.oracle.com/repo/OracleLinux/OL7/latest/x86_64/getPackage/orac ...

  2. 打印 PRINT

    打印 PRINT 字符串和数值类型 可以直接输出. print(1) #out:1 print('a') #out:a 变量 无论什么类型,数值,字符串,列表,字典...都可以直接输出 n = 1 s ...

  3. Java 线程池 8 大拒绝策略,面试必问!

    前言 谈到java的线程池最熟悉的莫过于ExecutorService接口了,jdk1.5新增的java.util.concurrent包下的这个api,大大的简化了多线程代码的开发.而不论你用Fix ...

  4. 短信群发(Thinkphp内核)

    public function save(){ $id = I('id'); $Goods = M('message'); $info = $Goods->find($id); //就收数据 $ ...

  5. css是干什么的

    css这些长篇累牍的参数,其实就是这些所谓的css编程者每天要干的事情了,他们把这些参数熟记于心,就像c++程序员,把这些函数库熟记于心一样,都是编程. css定制了每一个单独的组件,这些组件要么是相 ...

  6. 计算机系统结构总结_Scoreboard and Tomasulo

    Textbook:<计算机组成与设计——硬件/软件接口>  HI<计算机体系结构——量化研究方法>          QR 超标量 前面讲过超标量的概念.超标量的目的就是实现指 ...

  7. layoutSubviews何时调用的问题(原文:http://www.cnblogs.com/pengyingh/articles/2417211.html)

    今天跟旺才兄学习了一下UIView的setNeedsDisplay和setNeedsLayout方法.首先两个方法都是异步执行的.而setNeedsDisplay会调用自动调用drawRect方法,这 ...

  8. lspci - 列出所有PCI设备

    总览 SYNOPSIS lspci [options] 描述 DESCRIPTION lspci 是一个用来显示系统中所有PCI总线设备或连接到该总线上的所有设备的工具. 为了能使用这个命令所有功能, ...

  9. 用户在浏览器输入URL或者跳转到一个URL后发生了什么

    一.从URL到页面渲染的整个过程1)处理用户输入2)开始导航3)读取响应4)查找渲染进程5)确认导航6)渲染页面 二.每一步做了哪些事情 1)处理用户的输入 浏览器的UI 线程处理用户的输入,判断是跳 ...

  10. 《Java核心技术卷I》——第3章 Java的基本程序设计结构

    byte和short类型主要用于特定的应用场合,例如,底层的文件处理或者需要控制占用存储空间量的大数组. 十六进制数值有一个前缀0x(如0xCAFE),八进制有一个前缀0,如010对应八进制中的8.很 ...