Saving James Bond - Easy Version
- 题目来源:
浙江大学在慕课网上开设的《数据结构》课,陈越老师、何钦铭老师主讲,课后作业的一道题。
题目描述:



题目思路:
这道题目本质上讲就是列出图的连通集,但是这个连通集的起点是有约束的:詹姆斯邦德必须第一跳能跳到的点才是连通集的起点。解决这道问题可以使用DFS。
- C语言实现:
错误代码如下:
//孤岛应该被作为单独一个节点来测试
//孤岛周围可能有很多鳄鱼,程序就是要考察这些鳄鱼(节点)的连通集
//里有没有可以跳到岸上的。
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdbool.h>
#define MaxPointer 100
struct Pointer
{
int x;
int y;
};
struct Pointer Graph[MaxPointer];
bool Visited[MaxPointer]; //存储点是否被踩过
int jumpmaximum = 0; //007可以跳的最远距离
int pointernum = 0;
//作用:判断从中心可以调到那个鳄鱼头上
bool FirstJump(int i)
{
int dis = 0;
dis = (Graph[i].x - 0) * (Graph[i].x - 0) + (Graph[i].y - 0) * (Graph[i].y - 0);
return ((jumpmaximum + 7.5) * (jumpmaximum + 7.5) >= dis ? true : false);
}
//作用:判断从当前点能否跳到岸上去
//返回值: true 能
// false 不能
bool IsSafe(int i)
{
if (Graph[i].x + jumpmaximum >= 50 || Graph[i].x - jumpmaximum <= -50)
{
if (Graph[i].y + jumpmaximum >= 50 || Graph[i].y - jumpmaximum <= -50)
{
return true;
}
}
return false;
}
//作用:判断能否从i点跳到j点
//返回值: true 能
// false 不能
bool Jump(int i,int j)
{
int dis = 0;
dis = (Graph[i].x - Graph[j].x) * (Graph[i].x - Graph[j].x) + (Graph[i].y - Graph[j].y) * (Graph[i].y - Graph[j].y);
return (jumpmaximum * jumpmaximum >= dis ? true : false);
}
bool DFS(int i)
{
bool answer = false;
int j = 0;
//printf("%d.\n",i);
Visited[i] = true; //表示i点已经踩过
//能不能从当前点跳到岸上去
if (IsSafe(i))
{
answer = true;
}
for (j = 0; j < pointernum; j++)
{
if (!Visited[j] && Jump(i, j))
{
answer = DFS(j);
Visited[j] = false;
if (answer == true)
{
break;
}
}
}
return answer;
}
void Save007()
{
bool answer = false;
for (int i = 0;i < pointernum;i++)
{
if (!Visited[i] && FirstJump(i))
{
answer = DFS(i);
if (answer)
{
break;
}
}
}
if (answer)
{
printf("Yes");
}
else
{
printf("No");
}
}
int main()
{
scanf("%d", &pointernum);
scanf("%d", &jumpmaximum);
//初始化所有顶点状态都是未访问过状态
for (int i = 0; i < pointernum; i++)
{
Visited[i] = false;
}
for (int i = 0;i < pointernum;i++)
{
scanf("%d %d",&Graph[i].x,&Graph[i].y);
}
if (jumpmaximum >= 42.5)
{
printf("Yes");
}
Save007();
system("pause");
return 0;
}
最终修改BUG后的版本:
//孤岛应该被作为单独一个节点来测试
//孤岛周围可能有很多鳄鱼,程序就是要考察这些鳄鱼(节点)的连通集
//里有没有可以跳到岸上的。
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdbool.h>
#define MaxPointer 100
struct Pointer
{
int x;
int y;
};
struct Pointer Graph[MaxPointer];
bool Visited[MaxPointer]; //存储点是否被踩过
int jumpmaximum = 0; //007可以跳的最远距离
int pointernum = 0;
//作用:判断从中心可以调到那个鳄鱼头上
bool FirstJump(int i)
{
//int dis = 0;
//dis = (Graph[i].x - 0) * (Graph[i].x - 0) + (Graph[i].y - 0) * (Graph[i].y - 0);
//return ((jumpmaximum + 7.5) * (jumpmaximum + 7.5) >= dis ? true : false);
int p1 = pow(Graph[i].x, 2);
int p2 = pow(Graph[i].y, 2);
int r = (jumpmaximum + 7.5) * (jumpmaximum + 7.5);
if (p1 + p2 <= r) {
return true;
}
return false;
}
//作用:判断从当前点能否跳到岸上去
//返回值: true 能
// false 不能
bool IsSafe(int i)
{
if (Graph[i].x + jumpmaximum >= 50 || Graph[i].x - jumpmaximum <= -50
|| Graph[i].y + jumpmaximum >= 50 || Graph[i].y - jumpmaximum <= -50)
{
return true;
}
return false;
}
//作用:判断能否从i点跳到j点
//返回值: true 能
// false 不能
bool Jump(int i,int j)
{
int dis = 0;
dis = (Graph[i].x - Graph[j].x) * (Graph[i].x - Graph[j].x) + (Graph[i].y - Graph[j].y) * (Graph[i].y - Graph[j].y);
return (jumpmaximum * jumpmaximum >= dis ? true : false);
}
bool DFS(int i)
{
bool answer = false;
int j = 0;
//printf("%d.\n",i);
Visited[i] = true; //表示i点已经踩过
//能不能从当前点跳到岸上去
if (IsSafe(i))
{
answer = true;
}
for (j = 0; j < pointernum; j++)
{
if (!Visited[j] && Jump(i, j))
{
answer = DFS(j);
Visited[j] = false;
if (answer == true)
{
break;
}
}
}
return answer;
}
void Save007()
{
bool answer = false;
for (int i = 0;i < pointernum;i++)
{
if (!Visited[i] && FirstJump(i))
{
answer = DFS(i);
if (answer)
{
break;
}
}
}
if (answer)
{
printf("Yes");
}
else
{
printf("No");
}
}
int main()
{
scanf("%d", &pointernum);
scanf("%d", &jumpmaximum);
//初始化所有顶点状态都是未访问过状态
for (int i = 0; i < pointernum; i++)
{
Visited[i] = false;
}
for (int i = 0;i < pointernum;i++)
{
scanf("%d %d",&Graph[i].x,&Graph[i].y);
}
if (jumpmaximum >= 42.5)
{
printf("Yes");
}
Save007();
//system("pause");
return 0;
}
这两个程序主要的差别在最后判断邦德能不能直接从鳄鱼头跳到岸上去,第一个有BUG的版本中,这个判断函数是这样写的:
//作用:判断从当前点能否跳到岸上去
//返回值: true 能
// false 不能
bool IsSafe(int i)
{
if (Graph[i].x + jumpmaximum >= 50 || Graph[i].x - jumpmaximum <= -50)
{
if (Graph[i].y + jumpmaximum >= 50 || Graph[i].y - jumpmaximum <= -50)
{
return true;
}
}
return false;
}
第二个版本中,对这个函数进行了修改:
//作用:判断从当前点能否跳到岸上去
//返回值: true 能
// false 不能
bool IsSafe(int i)
{
if (Graph[i].x + jumpmaximum >= 50 || Graph[i].x - jumpmaximum <= -50
|| Graph[i].y + jumpmaximum >= 50 || Graph[i].y - jumpmaximum <= -50)
{
return true;
}
return false;
}
这两个版本的函数实现区别可以看下面的图,第一个版本的函数遗漏了一些点,所以才导致提交不通过。

Saving James Bond - Easy Version的更多相关文章
- Saving James Bond - Easy Version (MOOC)
06-图2 Saving James Bond - Easy Version (25 分) This time let us consider the situation in the movie & ...
- pat05-图2. Saving James Bond - Easy Version (25)
05-图2. Saving James Bond - Easy Version (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作 ...
- Saving James Bond - Easy Version 原创 2017年11月23日 13:07:33
06-图2 Saving James Bond - Easy Version(25 分) This time let us consider the situation in the movie &q ...
- PAT Saving James Bond - Easy Version
Saving James Bond - Easy Version This time let us consider the situation in the movie "Live and ...
- 06-图2 Saving James Bond - Easy Version
题目来源:http://pta.patest.cn/pta/test/18/exam/4/question/625 This time let us consider the situation in ...
- PTA 06-图2 Saving James Bond - Easy Version (25分)
This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...
- 06-图2 Saving James Bond - Easy Version (25 分)
This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...
- 06-图2 Saving James Bond - Easy Version (25 分)
This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...
- 06-图2 Saving James Bond - Easy Version (25 分)
This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...
- 06-图2 Saving James Bond - Easy Version(25 分)
This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...
随机推荐
- Elasticsearch Java Rest Client API 整理总结 (一)
http://www.likecs.com/default/index/show?id=39549
- kurento搭建以及运行kurento-hello-world
搭建环境的系统是ubuntu 1.kurento服务器搭建 运行如下脚本即可完成安装 #!/bin/bash echo "deb http://ubuntu.kurento.org trus ...
- solr的访问权限管理及ubuntu下iptables的设置
Apache Solr 是一个开源的搜索服务器,该平台默认允许匿名访问,攻击者可读取平台中各类敏感信息.之前考虑过增加账号密码访问,但是没有搞定,所以采用了曲线救国的方式,设置solr服务器只允许部分 ...
- 三、Appium-python-UI自动化之元素定位uiautomatorviewer
uiautomatorviewer是android-sdk自带的一个元素定位工具,非常简单好用,使用uiautomatorviewer,可以检查一个应用的UI来查看应用的布局和组件以及相关的属性. 一 ...
- kafka 通信报文格式
1. 序列化一条消息 消息有 key 和 value kafka 提供了基础数据类型的序列化工具,对于业务的自定义类需要自行实现序列化 ProducerRecord 是对象,含 KV 和 header ...
- 使用Postman对HTTP接口进行功能测试
一.工具说明 Postman是一种网页调试与发送网页http请求的工具.我们可以用来很方便的模拟get或者post或者其他方式的请求来调试接口. 二.应用场景 1.Get请求 get请求通过接口参数拼 ...
- Matlab 文件格式化/Matlab Source File Formattor
由于需要使用到别人编写的Matlab代码文件,但是呢不同的人有不同的风格,有的写得就比较糟糕了. 为了更好地理解代码的内容,一个比较美观的代码会让人身心愉悦. 但是在网上并没有找到一个比较好的实现,此 ...
- 手工设计神经MNIST使分类精度达到98%以上
设计了两个隐藏层,激活函数是tanh,使用Adam优化算法,学习率随着epoch的增大而调低 import tensorflow as tf from tensorflow.examples.tuto ...
- python每日一练:0015题
第 0015 题: 纯文本文件 city.txt为城市信息, 里面的内容(包括花括号)如下所示: { "1" : "上海", "2" : & ...
- GCC 环境变量 & eclipse CDT 头文件配置
转:http://blog.csdn.net/statdm/article/details/7751000 GCC 环境变量 & eclipse CDT 头文件配置 在unix 下使用e ...