POJ1742 coins 动态规划之多重部分和问题
原题链接:http://poj.org/problem?id=1742
题目大意:tony现在有n种硬币,第i种硬币的面值为A[i],数量为C[i]。现在tony要使用这些硬币去买一块价格不超过m的表。他希望买的时候不用找零,问有多少种价格能满足这一点。
这个问题实际上是一个多重部分和的问题:假设有n种物品,每种物品的价值为v[i],数量为c[i],随意选取这些物品,能否使它们的价值之和恰好为m。使用动态规划的思想来求解这类问题:
定义dp数组,dp[i][j]的值代表前i种物品随意选取,价值之和为j时第i种物品最多能剩下多少个,当前i种物品无法使价值之和刚好为j时,其值为-1。那么,很明显,递推关系存在四种情况:
①:如果dp[i - 1][j] >= 0,也就是说前i - 1种物品已经可以组合得到j,此时第i种物品可以一件也不取,即dp[i][j] = c[i];
②:如果不满足情况①,那么我们要通过在第i种物品中选取来使价值之和为j,但如果j的值小于v[i]的话,哪怕只选取一个也会超过j,所以此时无法实现要求,dp[i][j] = -1;
③:如果不满足情况①且j又不小于v[i]时,也许我们可以通过选取a个第i种物品来使价值之和恰好为j(1 <= a)。如果可以的话,那么选取a - 1个一定可以使价值之和为j - v[i],所以dp[i][j]可以由dp[i][j - v[i]]推出。如果dp[i][j - v[i]]等于-1(无法实现)或者等于0(第i种物品已用完),dp[i][j]都等于-1;
④:在情况③中,如果在第i种中拿a个能使价值之和为j - v[i],且第i种物品还有剩余,那再拿一个就可以使价值之和为j了,即dp[i][j] = dp[i][j - v[i]] - 1。
有了这些递推关系,我们就可以用如下的代码来求解多重部分和问题:
int n;//物品种数
int m;//目标和
int v[n];//每种物品的价值
int c[n];//每种物品的数量
memset(dp, -, sizeof(dp));
dp[] = ;//初始化
for(int i = ;i < n;i++)
{
for(int j = ;j <= m;j++)
{
if(dp[j] >= )//情况①
{
dp[j] = c[i];
//这里滚动使用了一个一维数组,dp[j]在更新前代表的是上一轮的值(即二维的dp[i - 1][j])或初始值
}
else if(j < v[i] || dp[j - v[i]] <= )//情况②、③
{
dp[j] = -;
}
else//情况④
{
dp[j] = dp[j - v[i]] - ;
}
}
}
这道poj1742只是在上面这个问题的基础上略加变形,我们只需要遍历dp数组求出1-m中有多少中价格可以被组合出来即可得到答案。
不过这种解法在POJ上耗时1800ms左右,虽然可以ac,但可能无法应付更大的数据规模或者更高的效率要求,我们还可以借助二进制优化或者各种数据结构来进一步提高效率。
POJ1742 coins 动态规划之多重部分和问题的更多相关文章
- POJ_1742_Coins_(动态规划,多重部分和)
描述 http://poj.org/problem?id=1742 n种不同面额的硬币 ai ,每种各 mi 个,判断可以从这些数字值中选出若干使它们组成的面额恰好为 k 的 k 的个数. 原型: n ...
- 多重部分和 poj1742
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- POJ1742 Coins(男人八题之一)
前言 大名鼎鼎的男人八题,终于见识了... 题面 http://poj.org/problem?id=1742 分析 § 1 多重背包 这很显然是一个完全背包问题,考虑转移方程: DP[i][j]表示 ...
- 编程算法 - 多重部分和问题 代码(C)
多重部分和问题 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n种不同大小的数字a, 每种各m个. 推断能否够从这些数字之中选出若干使它们的 ...
- HDU2844(多重部分和)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- COJ 0557 4013多重部分和问题
4013多重部分和问题 难度级别:B: 运行时间限制:2000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 n种大小不同的数字 Ai,每种各Mi个,判断是否可以从 ...
- 题解报告:hdu 1059 Dividing(多重背包、多重部分和问题)
Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...
- DP的初级问题——01包、最长公共子序列、完全背包、01包value、多重部分和、最长上升子序列、划分数问题、多重集组合数
当初学者最开始学习 dp 的时候往往接触的是一大堆的 背包 dp 问题, 那么我们在这里就不妨讨论一下常见的几种背包的 dp 问题: 初级的时候背包 dp 就完全相当于BFS DFS 进行搜索之后的记 ...
随机推荐
- jquery点击按钮弹出图片
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- Taro -- 使用 Redux 来进行全局变量的管理
前言 Redux是JavaScript 状态容器,提供可预测化的状态管理.一般来说,规模比较大的小程序,页面状态,数据缓存,需要管理的东西太多,这时候引入Redux可以方便的管理这些状态,同一数据,一 ...
- nodejs 模板引擎
自制替换模板 template.js var fs = require('fs') var http = require('http') var server = http.createServer( ...
- Android解决冲突
1.在app的build.gradle中的defaultConfig节点中配置configurations.all android{ ... defaultConfig { configuration ...
- Jquery异步上传文件
我想通过jQuery异步上传文件,这是我的HTML: 1 2 3 <span>File</span> <input type="file" id=&q ...
- Typescript + TSLint + webpack 搭建 Typescript 的开发环境
(1)初始化项目 新建一个文件夹“client-side”,作为项目根目录,进入这个文件夹: 我们先使用 npm 初始化这个项目: 这时我们看到了在根目录下已经创建了一个 package.json 文 ...
- W3C 事件切换 颜色变化
颜色变化代码: HTML: <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...
- JVM加载class文件原理
装载的概念 所谓装载就是寻找一个类或是一个接口的二进制形式并用该二进制形式来构造代表这个类或是这个接口的class对象的过程. Java中类装载器装载类到虚拟机 在Java中,类装载器把一个类装入Ja ...
- django之创建子应用
一:子应用 Django的视图编写是放在子应用中的.类似于flask中的视图. 二:创建子应用 例如:在刚才的dj_study项目中,创建一个名字为user的子应用(目录):注意是第一级的dj_stu ...
- 【leetcode】870. Advantage Shuffle
题目如下: 解题思路:几千年前,一个古人曾经解过这个题目,他的名字叫做田忌,后人称他的解题思想叫做“田忌赛马”.言归正传,本题就是一个田忌赛马的问题,先将A与B进行排序,然后判断A[0]与B[0]的大 ...