POJ1742 coins 动态规划之多重部分和问题
原题链接:http://poj.org/problem?id=1742
题目大意:tony现在有n种硬币,第i种硬币的面值为A[i],数量为C[i]。现在tony要使用这些硬币去买一块价格不超过m的表。他希望买的时候不用找零,问有多少种价格能满足这一点。
这个问题实际上是一个多重部分和的问题:假设有n种物品,每种物品的价值为v[i],数量为c[i],随意选取这些物品,能否使它们的价值之和恰好为m。使用动态规划的思想来求解这类问题:
定义dp数组,dp[i][j]的值代表前i种物品随意选取,价值之和为j时第i种物品最多能剩下多少个,当前i种物品无法使价值之和刚好为j时,其值为-1。那么,很明显,递推关系存在四种情况:
①:如果dp[i - 1][j] >= 0,也就是说前i - 1种物品已经可以组合得到j,此时第i种物品可以一件也不取,即dp[i][j] = c[i];
②:如果不满足情况①,那么我们要通过在第i种物品中选取来使价值之和为j,但如果j的值小于v[i]的话,哪怕只选取一个也会超过j,所以此时无法实现要求,dp[i][j] = -1;
③:如果不满足情况①且j又不小于v[i]时,也许我们可以通过选取a个第i种物品来使价值之和恰好为j(1 <= a)。如果可以的话,那么选取a - 1个一定可以使价值之和为j - v[i],所以dp[i][j]可以由dp[i][j - v[i]]推出。如果dp[i][j - v[i]]等于-1(无法实现)或者等于0(第i种物品已用完),dp[i][j]都等于-1;
④:在情况③中,如果在第i种中拿a个能使价值之和为j - v[i],且第i种物品还有剩余,那再拿一个就可以使价值之和为j了,即dp[i][j] = dp[i][j - v[i]] - 1。
有了这些递推关系,我们就可以用如下的代码来求解多重部分和问题:
int n;//物品种数
int m;//目标和
int v[n];//每种物品的价值
int c[n];//每种物品的数量
memset(dp, -, sizeof(dp));
dp[] = ;//初始化
for(int i = ;i < n;i++)
{
for(int j = ;j <= m;j++)
{
if(dp[j] >= )//情况①
{
dp[j] = c[i];
//这里滚动使用了一个一维数组,dp[j]在更新前代表的是上一轮的值(即二维的dp[i - 1][j])或初始值
}
else if(j < v[i] || dp[j - v[i]] <= )//情况②、③
{
dp[j] = -;
}
else//情况④
{
dp[j] = dp[j - v[i]] - ;
}
}
}
这道poj1742只是在上面这个问题的基础上略加变形,我们只需要遍历dp数组求出1-m中有多少中价格可以被组合出来即可得到答案。
不过这种解法在POJ上耗时1800ms左右,虽然可以ac,但可能无法应付更大的数据规模或者更高的效率要求,我们还可以借助二进制优化或者各种数据结构来进一步提高效率。
POJ1742 coins 动态规划之多重部分和问题的更多相关文章
- POJ_1742_Coins_(动态规划,多重部分和)
描述 http://poj.org/problem?id=1742 n种不同面额的硬币 ai ,每种各 mi 个,判断可以从这些数字值中选出若干使它们组成的面额恰好为 k 的 k 的个数. 原型: n ...
- 多重部分和 poj1742
Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...
- 题解报告:hdu 2844 & poj 1742 Coins(多重部分和问题)
Problem Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. On ...
- POJ1742 Coins(男人八题之一)
前言 大名鼎鼎的男人八题,终于见识了... 题面 http://poj.org/problem?id=1742 分析 § 1 多重背包 这很显然是一个完全背包问题,考虑转移方程: DP[i][j]表示 ...
- 编程算法 - 多重部分和问题 代码(C)
多重部分和问题 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 有n种不同大小的数字a, 每种各m个. 推断能否够从这些数字之中选出若干使它们的 ...
- HDU2844(多重部分和)
Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- COJ 0557 4013多重部分和问题
4013多重部分和问题 难度级别:B: 运行时间限制:2000ms: 运行空间限制:262144KB: 代码长度限制:2000000B 试题描述 n种大小不同的数字 Ai,每种各Mi个,判断是否可以从 ...
- 题解报告:hdu 1059 Dividing(多重背包、多重部分和问题)
Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...
- DP的初级问题——01包、最长公共子序列、完全背包、01包value、多重部分和、最长上升子序列、划分数问题、多重集组合数
当初学者最开始学习 dp 的时候往往接触的是一大堆的 背包 dp 问题, 那么我们在这里就不妨讨论一下常见的几种背包的 dp 问题: 初级的时候背包 dp 就完全相当于BFS DFS 进行搜索之后的记 ...
随机推荐
- 06Web服务
1.web开发入门 1.1 引入 软件结构分类: CS结构:客户端和服务器端 特点: 1)必须安装特点的客户端程序 2)服务器端升级,客户端同步升级 BS结构:浏览器和服务器端 特点: 1)不需要安装 ...
- java并发学习--第六章 线程之间的通信
一.等待通知机制wait()与notify() 在线程中除了线程同步机制外,还有一个最重要的机制就是线程之间的协调任务.比如说最常见的生产者与消费者模式,很明显如果要实现这个模式,我们需要创建两个线程 ...
- TS中补充的六个类型
1. 元组 元组可以看做是数组的拓展,它表示已知元素数量和类型的数组.确切地说,是已知数组中每一个位置上的元素的类型 当我们为 元组 赋值时:各个位置上的元素类型都要对应,元素个数也要一致. let ...
- Github熟悉一
Code/代码 Commits/提交 Issues/问题 Packages/包装 Marketplace/市场 Topics/话题 Wikis/维基百科 Users/用户 Pull requests/ ...
- CGfsb
这里补充一下%n是代表向参数赋值打印的字符个数 例如printf("AAAA%n",&a); 代表的是向a写入4 printf("AAAA%1n", & ...
- Java缓冲字符读取
public class BufferedReaderDemo { public static void main(String[] args) throws IOException { // 创建流 ...
- Dubbo学习-7-dubbo配置文件优先级
Dubbo配置加载流程 根据驱动方式的不同(比如Spring或裸API编程)配置形式上肯定会有所差异,具体参考XML配置.Annotation配置.API配置三篇文档.除了外围驱动方式上的差异,Dub ...
- linux运维、架构之路-linux用户管理
一. linux系统用户分类 1.分类 ①超级用户:root,UID为0 ②普通用户:UID是500-65535的用户 ③虚拟用户:UID在1-499,一般不能登录,满足文件或服务启动的需要,/sbi ...
- Telegraf根据配置文件启动(Influxdb的数据收集)
1.创建一个telegraf.config文件 telegraf -sample-config -input-filter cpu:disk:diskio:net:system:mem -output ...
- django的安装和初步使用
安装参考:步骤也可以参考这个 很详细 https://blog.csdn.net/zww1984774346/article/details/54408759 如果想在终端查看项目结构 需要用到tre ...