二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)
例题
- 中序遍历94. Binary Tree Inorder Traversal
- 先序遍历144. Binary Tree Preorder Traversal
- 后序遍历145. Binary Tree Postorder Traversal
递归栈
递归函数栈的方法很基础,写法也很简单,三种遍历方式之间只需要改变一行代码的位置即可
中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void inorder(TreeNode* root, vector<int>& v){
if(root != nullptr) {
inorder(root->left, v);
v.push_back(root->val); // 改变位置的代码
inorder(root->right, v);
}
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> v;
inorder(root, v);
return v;
}
};
先序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void inorder(TreeNode* root, vector<int>& v){
if(root != nullptr) {
v.push_back(root->val);
inorder(root->left, v);
inorder(root->right, v);
}
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> v;
inorder(root, v);
return v;
}
};
后序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void inorder(TreeNode* root, vector<int>& v){
if(root != nullptr) {
inorder(root->left, v);
inorder(root->right, v);
v.push_back(root->val);
}
}
vector<int> inorderTraversal(TreeNode* root) {
vector<int> v;
inorder(root, v);
return v;
}
};
非递归栈
当树的深度过大时,函数栈可能会溢出,这时候需要我们使用数据结构中的栈,来模拟节点在栈中的压入和弹出
中序遍历
cur指针时刻指向需要处理的节点
如果当前节点不为空,则压入栈中,并改变cur指针指向其左节点
如果当前节点为空,也代表空节点的中序遍历自动完成,无需压栈,这时候需要弹出栈顶的节点,保存栈顶节点的值,并更改cur指向其右子树,以完成右子树的中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> v;
stack<TreeNode*> s;
TreeNode* cur = root;
while(cur || !s.empty()){
if(cur){
s.push(cur);
cur = cur->left;
} else {
cur = s.top();
s.pop();
v.push_back(cur->val);
cur = cur->right;
}
}
return v;
}
};
先序遍历
先序遍历与中序遍历代码相比只改变了保存节点的值的代码的位置,当先访问根的时候就记录节点,而不是等左子树遍历完,弹出根节点的时候再记录
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
vector<int> v;
stack<TreeNode*> s;
TreeNode* cur = root;
while(cur || !s.empty()){
if(cur){
v.push_back(cur->val);
s.push(cur);
cur = cur->left;
} else {
cur = s.top();
s.pop();
cur = cur->right;
}
}
return v;
}
};
后序遍历
因为后序遍历的压栈顺序是左-右-根,由于先遍历完左子树,然后遍历完右子树,然后才能处理当前节点,为了和之前的代码的结构保持一致,我们可以反向处理,也就是按根-右-左的顺序压栈,
结果反向输出即可
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> v;
stack<TreeNode*> s;
TreeNode* cur = root;
while(cur || !s.empty()){
if(cur){
v.push_back(cur->val);
s.push(cur);
cur = cur->right;
} else {
cur = s.top();
s.pop();
cur = cur->left;
}
}
reverse(v.begin(), v.end()); // 反向输出结果
return v;
}
};
Morris Traversal
线索二叉树,O(n)时间,常数空间
Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)
就是当前节点的中序遍历前驱节点,如果此前驱节点的右指针为空,则将此前驱节点的右指针指向当前节点
当寻找当前节点的中序遍历前驱节点时,发现能循环到自己,说明左子树已经遍历完,需要遍历右子树
中序遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
TreeNode* cur, *prev;
vector<int> v;
cur = root;
prev = nullptr;
while(cur){
if(cur->left == nullptr){
v.push_back(cur->val);
cur = cur->right;
} else {
prev = cur->left;
while(prev->right != nullptr && prev->right != cur)
prev = prev->right;
if(prev->right == nullptr){
prev->right = cur;
cur = cur->left;
} else {
v.push_back(cur->val);
prev->right = nullptr;
cur = cur->right;
}
}
}
return v;
}
};
先序遍历
同样先序遍历与中序遍历相比也只需要改变一行代码的位置
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> preorderTraversal(TreeNode* root) {
TreeNode* cur, *prev;
vector<int> v;
cur = root;
prev = nullptr;
while(cur){
if(cur->left == nullptr){
v.push_back(cur->val);
cur = cur->right;
} else {
prev = cur->left;
while(prev->right != nullptr && prev->right != cur)
prev = prev->right;
if(prev->right == nullptr){
v.push_back(cur->val);
prev->right = cur;
cur = cur->left;
} else {
prev->right = nullptr;
cur = cur->right;
}
}
}
return v;
}
};
后序遍历
后序遍历需要反向输出cur->left到cur的中序前驱结点之间的路径
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void reverse_traverse_reverse(TreeNode* cur, vector<int>& v){
TreeNode* prev = nullptr;
while(cur){
auto right = cur->right;
cur->right = prev;
prev = cur;
cur = right;
}
cur = prev;
prev = nullptr;
while(cur){
auto right = cur->right;
cur->right = prev;
v.push_back(cur->val);
prev = cur;
cur = right;
}
}
vector<int> postorderTraversal(TreeNode* root) {
TreeNode* cur, *prev;
vector<int> v;
cur = new TreeNode(-1);
prev = nullptr;
cur->left = root;
while(cur){
if(cur->left == nullptr){
cur = cur->right;
} else {
prev = cur->left;
while(prev->right != nullptr && prev->right != cur)
prev = prev->right;
if(prev->right == nullptr){
prev->right = cur;
cur = cur->left;
} else {
prev->right = nullptr;
reverse_traverse_reverse(cur->left, v);
cur = cur->right;
}
}
}
return v;
}
};
总结
三种遍历方式中,后序遍历的处理比较麻烦,但是无论是使用递归栈,非递归栈还是Morris Traversal,代码的结构都是一样的,中序和前序甚至只有一行代码位置的差别
使用栈的版本中,最坏空间复杂度为O(n)链型,平均空间复杂度为O(lgn)
Morris Traversal空间复杂度为O(1)
二叉树中序遍历,先序遍历,后序遍历(递归栈,非递归栈,Morris Traversal)的更多相关文章
- 二叉树前中后/层次遍历的递归与非递归形式(c++)
/* 二叉树前中后/层次遍历的递归与非递归形式 */ //*************** void preOrder1(BinaryTreeNode* pRoot) { if(pRoot==NULL) ...
- 数据结构二叉树的递归与非递归遍历之java,javascript,php实现可编译(1)java
前一段时间,学习数据结构的各种算法,概念不难理解,只是被C++的指针给弄的犯糊涂,于是用java,web,javascript,分别去实现数据结构的各种算法. 二叉树的遍历,本分享只是以二叉树中的先序 ...
- C实现二叉树(模块化集成,遍历的递归与非递归实现)
C实现二叉树模块化集成 实验源码介绍(源代码的总体介绍):header.h : 头文件链栈,循环队列,二叉树的结构声明和相关函数的声明.LinkStack.c : 链栈的相关操作函数定义.Queue. ...
- 二叉树3种递归和非递归遍历(Java)
import java.util.Stack; //二叉树3种递归和非递归遍历(Java) public class Traverse { /******************一二进制树的定义*** ...
- JAVA递归、非递归遍历二叉树(转)
原文链接: JAVA递归.非递归遍历二叉树 import java.util.Stack; import java.util.HashMap; public class BinTree { priva ...
- 二叉树的创建、遍历(递归和非递归实现)、交换左右子数、求高度(c++实现)
要求:以左右孩子表示法实现链式方式存储的二叉树(lson—rson),以菜单方式设计并完成功能任务:建立并存储树.输出前序遍历结果.输出中序遍历结果.输出后序遍历结果.交换左右子树.统计高度,其中对于 ...
- JAVA递归、非递归遍历二叉树
前序遍历:1.访问根节点 2.前序遍历左子树 3.前序遍历右子树 中序遍历:1.中序遍历左子树 2.访问根节点 3.中序遍历右子树 后序遍历:1.后序遍历左子树 2.后序遍历右子树 3.访问根节点-- ...
- 基于Java的二叉树的三种遍历方式的递归与非递归实现
二叉树的遍历方式包括前序遍历.中序遍历和后序遍历,其实现方式包括递归实现和非递归实现. 前序遍历:根节点 | 左子树 | 右子树 中序遍历:左子树 | 根节点 | 右子树 后序遍历:左子树 | 右子树 ...
- 数据结构-树以及深度、广度优先遍历(递归和非递归,python实现)
前面我们介绍了队列.堆栈.链表,你亲自动手实践了吗?今天我们来到了树的部分,树在数据结构中是非常重要的一部分,树的应用有很多很多,树的种类也有很多很多,今天我们就先来创建一个普通的树.其他各种各样的树 ...
- 二叉树之AVL树的平衡实现(递归与非递归)
这篇文章用来复习AVL的平衡操作,分别会介绍其旋转操作的递归与非递归实现,但是最终带有插入示例的版本会以递归呈现. 下面这张图绘制了需要旋转操作的8种情况.(我要给做这张图的兄弟一个赞)后面会给出这八 ...
随机推荐
- [mysql]SQL语句-新增/修改 创建时间 更新时间
SQL关键词 要注意大小写 已建表,之前没有创建时间列, 现新增1列创建时间,并设置默认值为当前时间 --添加CreateTime 设置默认时间 CURRENT_TIMESTAMP ALTER T ...
- 转载-Mysql主主复制架构配置
Mysql主主复制架构配置 转载:原始出处 http://luoweiro.blog.51cto.com/2186161/658550MySQL主主复制结构区别于主从复制结构.在主主复制结构中,两台服 ...
- 阶段3 2.Spring_08.面向切面编程 AOP_3 spring基于XML的AOP-编写必要的代码
新建项目 先改打包方式 导包,就先导入这俩包的坐标 aspectjweaver为了解析切入点表达式 新建业务层接口 定义三个方法 看返回和参数的区别.为了把这三类方法表现出来,并不局限于方法干什么事 ...
- iOS解决表格中TextField,TextView编辑时,输入框被键盘遮挡的问题
方法1:在原来的 UIViewController 内部再添加一层 UITableViewController 代码如下 : // // ViewController.m // 键盘遮挡问题 // / ...
- JSP指令标签、动作标签
JSP有三大指令: * page指令 * include指令 * taglib指令 在JSP中没有任何指令是必须的!!! 但基本上每个JSP都是使用page指令! page指令 page ...
- Linux配置全局jdk以及Tomcat服务器简单测试
Linux配置全局jdk 1.确保相应文件夹下有apache-tomcat和jdk的压缩文件 注意:jdk文件必须为适应Linux版本的文件 (如果已经有了相应文件,可以跳过以下第2-3个步骤) 2. ...
- UML_2_浅谈UML的概念和模型之UML九种图
转载:https://my.oschina.net/zhumenzhongren/blog/667353 上文我们介绍了,UML的视图,在每一种视图中都包含一个或多种图.本文我们重点讲解UML每种图的 ...
- centos中切换图形与命令行界面
1.在命令行的centos中安装图形化 配置本地源 [root@localhost yum.repos.d]# yum clean all [root@localhost yum.repos.d]# ...
- MyBatis框架原理1:构建SqlSessionFactory的过程
SqlSessionFactoryBuilder 首先创建了一个SqlSessionFactoryBuilder对象,然后调用该对象的build方法加载全局XML配置的流文件构建出一个SqlSessi ...
- python--006
一.函数的作用域 1.作用域在定义函数时就已经固定住了,不会随着调用位置的改变而改变 例一: name='alex' def foo(): name='lhf' def bar(): print(na ...