4653: [Noi2016]区间

Time Limit: 60 Sec  Memory Limit: 256 MB
Submit: 1593  Solved: 869
[Submit][Status][Discuss]

Description

在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn]。现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置。换句话说,就是使得存在一个 x,使得对于每一个被选中的区间 [li,ri],都有 li≤x≤ri。
对于一个合法的选取方案,它的花费为被选中的最长区间长度减去被选中的最短区间长度。区间 [li,ri] 的长度定义为 ri−li,即等于它的右端点的值减去左端点的值。
求所有合法方案中最小的花费。如果不存在合法的方案,输出 −1。

Input

第一行包含两个正整数 n,m用空格隔开,意义如上文所述。保证 1≤m≤n
接下来 n行,每行表示一个区间,包含用空格隔开的两个整数 li 和 ri 为该区间的左右端点。
N<=500000,M<=200000,0≤li≤ri≤10^9

Output

只有一行,包含一个正整数,即最小花费。

Sample Input

6 3
3 5
1 2
3 4
2 2
1 5
1 4

Sample Output

2
 
 

思路很神的乱搞题。

如果不管复杂度,我们可以考虑先将所有区间离散化,之后按照区间长度排序。然后从左往右扫,以每个区间为起始区间,尝试逐个加入之后的区间。怎么加入呢?用一个数组表示覆盖层数,将它左端点到右端点之间的所有点+1,表示多覆盖了一层。当有一个点被覆盖到m层时,统计一下目前的最靠右区间与起始区间的长度差更新答案。实际上,我们并不管具体选了哪些区间,只管能更新答案的最大长度的和最小长度的两个,这样只要保证选择合法即可,不用讨论具体选择。

(博主写到这里,冥思苦想40min,还是没证出来它的正确性,所以咕了)

(之后线段树优化一下区间加法就好了)

不要脸的博主又回来了。之前一直想不明白的原因在于纠结它会不会因为想找最优而漏解 导致输出-1的情况出错,这实际上是不可能的。如果你从左往右扫到n都没有更新答案,就说明确实没有方案可以满足一个点被覆盖m次,因为即使是单调指针 这么全扫一遍也能够考虑到所有情况。

至于线段树优化,其实就是用一个区间加法和全局最大值查询(所以没必要写区间查询的函数)。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define ls(k) k<<1
#define rs(k) k<<1|1
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')x=x*+ch-'',ch=getchar();
return x*f;
}
const int N=;
int n,m,c[N<<],tot,top,ans=0x3f3f3f3f;
struct node
{
int l,r,len;
}q[N];
int cmp(node x,node y)
{
return x.len<y.len;
}
int maxx[N<<],lz[N<<];
void down(int k,int l,int r)
{
if(l==r)
{
lz[k]=;
return ;
}
lz[ls(k)]+=lz[k];lz[rs(k)]+=lz[k];
maxx[ls(k)]+=lz[k];maxx[rs(k)]+=lz[k];
lz[k]=;
}
void add(int k,int l,int r,int L,int R,int val)
{
if(L<=l&&R>=r)
{
maxx[k]+=val;
lz[k]+=val;
return ;
}
int mid=l+r>>;
if(lz[k])down(k,l,r);
if(L<=mid)add(ls(k),l,mid,L,R,val);
if(R>mid)add(rs(k),mid+,r,L,R,val);
maxx[k]=max(maxx[ls(k)],maxx[rs(k)]);
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
q[i].l=read(),q[i].r=read(),q[i].len=q[i].r-q[i].l,c[++tot]=q[i].l,c[++tot]=q[i].r;
sort(c+,c+tot+);
tot=unique(c+,c+tot+)-c-;
for(int i=;i<=n;i++)
q[i].l=lower_bound(c+,c+tot+,q[i].l)-c,q[i].r=lower_bound(c+,c+tot+,q[i].r)-c;
sort(q+,q+n+,cmp);
for(int i=;i<=n;i++)
{
while(maxx[]<m&&top<n)
top++,add(,,tot,q[top].l,q[top].r,);
if(maxx[]==m)ans=min(ans,q[top].len-q[i].len);
add(,,tot,q[i].l,q[i].r,-);
}
if(ans==0x3f3f3f3f)puts("-1");
else cout<<ans<<endl;
return ;
}

[NOI2016]区间 题解(决策单调性+线段树优化)的更多相关文章

  1. 【题解】Journeys(线段树优化连边)

    [#3073. Pa2011]Journeys (线段树优化连边) 这张图太直观了,直接讲透了线段树优化连边的原理和正确性. 考虑建立两颗线段树,一颗是外向树,一颗是内向树,相当于网络流建模一样,我们 ...

  2. luogu P1712 [NOI2016]区间 贪心 尺取法 线段树 二分

    LINK:区间 没想到尺取法. 先说暴力 可以发现答案一定可以转换到端点处 所以在每个端点从小到大扫描线段就能得到答案 复杂度\(n\cdot m\) 再说我的做法 想到了二分 可以进行二分答案 从左 ...

  3. BZOJ 4653 [Noi2016]区间(Two pointers+线段树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4653 [题目大意] 在数轴上有n个闭区间 [l1,r1],[l2,r2],...,[l ...

  4. 【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序

    题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...

  5. 炸弹:线段树优化建边+tarjan缩点+建反边+跑拓扑

    这道题我做了有半个月了...终于A了... 有图为证 一句话题解:二分LR线段树优化建边+tarjan缩点+建反边+跑拓扑统计答案 首先我们根据题意,判断出来要炸弹可以连着炸,就是这个炸弹能炸到的可以 ...

  6. CodeForces 558E(计数排序+线段树优化)

    题意:一个长度为n的字符串(只包含26个小字母)有q次操作 对于每次操作 给一个区间 和k k为1把该区间的字符不降序排序 k为0把该区间的字符不升序排序 求q次操作后所得字符串 思路: 该题数据规模 ...

  7. [bzoj3073] Journeys 题解(线段树优化建图)

    Description Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建 ...

  8. 7月13日考试 题解(DFS序+期望+线段树优化建图)

    T1 sign 题目大意:给出一棵 N 个节点的树,求所有起点为叶节点的有向路径,其 上每一条边权值和的和.N<=10000 水题.考试的时候毒瘤出题人(学长orz)把读入顺序改了一下,于是很多 ...

  9. SRM12 T2夏令营(分治优化DP+主席树 (已更新NKlogN)/ 线段树优化DP)

     先写出朴素的DP方程f[i][j]=f[k][j-1]+h[k+1][i] {k<i}(h表示[k+1,j]有几个不同的数)  显然时间空间复杂度都无法承受   仔细想想可以发现对于一个点 i ...

随机推荐

  1. getcwd函数学习

    getcwd 函数原型:char *getcwd( char *buffer, int maxlen ); 功 能:获取当前工作目录 参数说明:getcwd()会将当前工作目录的绝对路径复制到参数bu ...

  2. boot、cloud

    最近在学习Spring Boot也整理了一些文章,有需要的可以参考一下 https://www.zhihu.com/question/39483566 Spring Cloud是一系列框架的有序集合. ...

  3. CDN技术之--流媒体CDN系统的组成

    流媒体业务是一种对实时性.连续性.时序性要求非常高的业务,无论从带宽消耗上还是质量保障上来说,对best-effort的IP网络都是一个不小的冲击 –高带宽要求–高QoS要求–组播.广播要求(目前IP ...

  4. if(!confirm("您确定删除吗?")){return;}

    if(!confirm("您确定删除吗?")){return;}

  5. Dart 和 Flutter 使用json_annotation和json_serializable来处理json数据教程

    在学习fultter的时候突然想到如何去处理从服务器获取的json或者将app中的对象数据转换成json上传给服务器 于是研究一下dart对json数据的处理 首先需要依赖下面的第三方库(这里要强调下 ...

  6. hbase shell插入根据条件查询数据

    hbase shell插入根据条件查询数据 创建并插入数据: hbase(main):179:0> create 'scores','grade','course' hbase(main):18 ...

  7. mysql常用内置函数-查询语句中不能使用strtotime()函数!

    来自:http://yushine.iteye.com/blog/775407 FROM_UNIXTIME把 unix时间戳转换为标准时间 unix_timestamp把标准时间转换为 unix时间戳 ...

  8. 在IIS7以上导出所有应用程序池的方法批量域名绑定(网站绑定)

    在IIS7+上导出所有应用程序池的方法: %windir%/system32/inetsrv/appcmd list apppool /config /xml > c:/apppools.xml ...

  9. yum安装apache

    一.查询是否已经安装apache rpm  -qa  httpd 注:Apache在linux系统里的名字是httpd 如果有返回的信息,则会显示已经安装的软件.如果没有则不会显示其它的信息.如下图是 ...

  10. PHP CURL 模拟form表单上传遇到的小坑

    1:引用的时候 $parans ['img']=new \CURLFile($param); 传入的文件 在PHP版本5.5以上记得new CURLFile 不然会上传不成功 /** * http p ...