2019牛客多校第四场C-sequence(单调栈+线段树)
sequence
解题思路
用单调栈求出每个a[i]作为最小值的最大范围。对于每个a[i],我们都要乘以一个以a[i]为区间内最小值的对应的b的区间和s,如果a[i] > 0,则s要尽量大,如果a[i] < 0,则s要尽量小。因为一段区间的和可以利用前缀和c[]相减求出,而以a[i]为最小值的区间和为:c[i~r] - c[l-1~i-1]。 所以用b[i]的前缀和建立线段树,维护其最大最小值。要求最大的s,即为求ir内的最大前缀和与l-1i-1范围内的最小前缀和。求最小的s同理。
代码如下
#include <bits/stdc++.h>
#define INF 5223372036854775807LL
using namespace std;
typedef long long ll;
inline int read(){
int res = 0, w = 0; char ch = 0;
while(!isdigit(ch)){
w |= ch == '-', ch = getchar();
}
while(isdigit(ch)){
res = (res << 3) + (res << 1) + (ch ^ 48);
ch = getchar();
}
return w ? -res : res;
}
const int N = 3000005;
ll a[N], b[N];
ll c[N];
struct T{
int l, r;
ll maxx, minn;
}tree[N<<2];
void build(int k, int l, int r)
{
tree[k].l = l;
tree[k].r = r;
if(l == r){
tree[k].maxx = tree[k].minn = c[l];
return;
}
int mid = (l + r) / 2;
build(2*k, l, mid);
build(2*k+1, mid + 1, r);
tree[k].maxx = max(tree[2*k].maxx, tree[2*k+1].maxx);
tree[k].minn = min(tree[2*k].minn, tree[2*k+1].minn);
}
ll query_minn(int k, int l, int r)
{
if(tree[k].l >= l && tree[k].r <= r)
return tree[k].minn;
int mid = (tree[k].l + tree[k].r) / 2;
ll m1 = INF, m2 = INF;
if(l <= mid)
m1 = query_minn(2*k, l, r);
if(r > mid)
m2 = query_minn(2*k+1, l, r);
return min(m1, m2);
}
ll query_maxx(int k, int l, int r)
{
if(tree[k].l >= l && tree[k].r <= r)
return tree[k].maxx;
int mid = (tree[k].l + tree[k].r) / 2;
ll m1 = -INF, m2 = -INF;
if(l <= mid)
m1 = query_maxx(2*k, l, r);
if(r > mid)
m2 = query_maxx(2*k+1, l, r);
return max(m1, m2);
}
int l[N], r[N];
int dq[N];
int main()
{
int n;
n = read();
for(int i = 1; i <= n; i ++)
a[i] = read();
for(int i = 1; i <= n; i ++)
b[i] = read();
for(int i = 1; i <= n; i ++)
c[i] = c[i - 1] + b[i];
build(1, 1, n);
int ql, qr;
ql = qr = 0;
for(int i = 1; i <= n; i ++){
while(ql != qr && a[dq[qr - 1]] >= a[i])
qr --;
if(ql != qr)
l[i] = dq[qr - 1] + 1;
else
l[i] = 1;
dq[qr++] = i;
}
ql = qr = 0;
for(int i = n; i >= 1; i --){
while(ql != qr && a[dq[qr - 1]] >= a[i])
qr --;
if(ql != qr)
r[i] = dq[qr - 1] - 1;
else
r[i] = n;
dq[qr++] = i;
}
ll ans = -INF;
for(int i = 1; i <= n; i ++){
if(a[i] < 0){
ans = max(ans, a[i] * (query_minn(1, i, r[i]) - query_maxx(1, l[i] - 1, i - 1)));
}
else if(a[i] > 0){
ans = max(ans, a[i] * (query_maxx(1, i, r[i]) - query_minn(1, l[i] - 1, i - 1)));
}
else
ans = max(ans, 0LL);
}
cout << ans << endl;
return 0;
}
2019牛客多校第四场C-sequence(单调栈+线段树)的更多相关文章
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 牛客多校第四场 J.Hash Function(线段树优化建图+拓扑排序)
题目传送门:https://www.nowcoder.com/acm/contest/142/J 题意:给一个hash table,求出字典序最小的插入序列,或者判断不合法. 分析: eg.对于序列{ ...
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
- 2019牛客多校第四场 A meeting
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
- 牛客多校第十场 A Rikka with Lowbit 线段树
链接:https://www.nowcoder.com/acm/contest/148/A来源:牛客网 题目描述 Today, Rikka is going to learn how to use B ...
- 2019牛客多校第四场B xor——线段树&&线性基的交
题意 给你 $n$ 个集合,每个集合中包含一些整数.我们说一个集合表示一个整数当且仅当存在一个子集其异或和等于这个整数.现在你需要回答 $m$ 次询问 ($l, r, x$),是否 $l$ 到 $r$ ...
- 2019牛客多校第四场J free——分层图&&最短路
题意 一张无向图,每条边有权值,可以选择不超过 $k$ 条路使其权值变成0,求 $S$ 到 $T$ 的最短路.(同洛谷 P4568) 分析 首先,分层图最短路可以有效解决这种带有 「阶段性」的最短路, ...
- 2019牛客多校第四场A meeting——树的直径
题意: 一颗 $n$ 个节点的树上标有 $k$ 个点,找一点使得到 $k$ 个关键结点的最大距离最小. 分析: 问题等价于求树的直径,最小距离即为直径除2向上取整. 有两种求法,一是动态规划,对于每个 ...
- [2019牛客多校第四场][G. Tree]
题目链接:https://ac.nowcoder.com/acm/contest/884/G 题目大意:给定一个树\(A\),再给出\(t\)次询问,问\(A\)中有多少连通子图与树\(B_i\)同构 ...
- 2019牛客多校第四场D-triples I 贪心
D-triples 题意 给你一个\(n\),问至少有几个数或运算起来可以等于\(n\),并且输出数量和这个几个数.题目说明给的\(n\)一定符合条件(不会输出\(n= 1\) 之类不存在情况). 思 ...
随机推荐
- 线程同步(基于java)
java线程 同步与异步 线程池 1)多线程并发时,多个线程同时请求同一个资源,必然导致此资源的数据不安全,A线程修改了B线 程的处理的数据,而B线程又修改了A线程处理的数理.显然这是由于全局资源造成 ...
- Java核心基础知识(一):概念、语法、使用、源码
1. Java中OOP的特点? OOP(Object Oriented Programming):面向对象编程.具有封装.继承.多态三大特征. 封装:解决数据安全性问题: 继承:解决代码的重用性问题: ...
- 模板引擎的简单原理template
var templateStr = "我的名字叫<%=name%>我是一只小狗,今年<%=age%>岁."; var data = { name:'旺财 ...
- os.walk|图片数据集
该函数的功能:遍历指定文件夹下的所有[路径][文件夹][文件名] ''' os.walk(top[, topdown=True[, onerror=None[, followlinks=False]] ...
- 简单了解Redis
redis是什么 redis是一种支持key-value等多种数据结构的存储系统,可用于缓存,事件发布,消息队列等场景,支持多种数据类型 string.hash.list.set.zset.而且基于内 ...
- 把多个JavaScript函数绑定到onload事件处理函数上的技巧
一,onload事件发生条件 用户进入页面且页面所有元素都加载完毕.如果在页面的初始位置添加一个JavaScript函数,由于文档没有加载完毕,DOM不完整,可能导致函数执行错误或者达不到我们想要的效 ...
- Go 语言变量、常量
变量 第一种,指定变量类型,声明后若不赋值,使用默认值. var v_name v_type v_name = value 第二种,根据值自行判定变量类型. var v_name = value 第三 ...
- 项目实战-Gulp使用
引言 在工作中,经常会遇到要把文件合并和压缩等操作,我经历过下面的演进过程: 使用ajaxmin工具手动合并和压缩 使用Grunt合并和压缩 使用Gulp合并和压缩 这里不探讨Grunt和Gulp的优 ...
- 启动AutoCAD时自动加载.NET开发的DLL
程序组织,建立名为*.bundle的文件夹,创建Contents子文件夹,并将dll,ico等文件放进Contents中,在*.bundle中创建PackageContents.xml文件,内容如下: ...
- Spring AOP 总结
AOP的基础是Java动态代理 Java中代理的实现一般分为三种:JDK静态代理.JDK动态代理以及CGLIB动态代理. 静态代理: 代理类与被代理类实现同一个接口,在代理类中持有一个被代理对象的引用 ...