题目大意:

F(1)=A, F(2)=B,  F(i)=C*F(i-2)+D*F(i-1)+p/i(向下取整)

给定A B C D p n

求F(n)

构造

   矩阵A    *    矩阵B        =          矩阵C

┌ F(n-2) F(n-1) 1  ┐    ┌ 0   C  0  ┐        ┌ F(n-1) F(n)   1   ┐

|      0  0   0    | *   |  1   D  0  |   =    |      0  0   0    |

└  0     0   0 ┘    └ 0  p/i 1 ┘  └  0     0   0 ┘

那么当A为第一项时  A*(B^n)=第n项

因为p/i向下取整所以在 1~n的范围中 p/i的数值是多段相等的

如n=10 p=15 那么1~n中 p/i为 15 7 5 3 3 2 2 1 1 1

改变B中的p/i 分别求B^len 即 B^1 B^1 B^1 B^2 B^2 B^3

已知 p / i = x 那么len = min( p / ( p / i ) , n )  都是int型向下取整

就得到了分块的 B^n

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LLINF 0x3f3f3f3f3f3f3f3f3f
#define LL long long
#define mem(i,j) memset(i,j,sizeof(i))
const int N=;
const int mod=1e9+; LL A,B,C,D,p,n;
struct MAT {
LL a[N][N];
MAT(){ mem(a,); }
MAT operator*(MAT p) {
MAT res;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
for(int k=;k<N;k++)
res.a[i][j]=(res.a[i][j]+a[i][k]*p.a[k][j])%mod;
return res;
}
}Ans,Pow;
MAT mod_pow(MAT A,int x) {
MAT res;
res.a[][]=res.a[][]=res.a[][]=;
while(x) {
if(x&) res=res*A;
A=A*A; x>>=;
}
return res;
}
int main()
{
int t; scanf("%d",&t);
while(t--) {
scanf("%lld%lld%lld%lld%lld%lld",&A,&B,&C,&D,&p,&n);
Ans.a[][]=A, Ans.a[][]=B, Ans.a[][]=;
Pow.a[][]=Pow.a[][]=;
Pow.a[][]=C, Pow.a[][]=D;
for(int x=,px;x<=n;x=px+) {
px= p/x ? min(p/(p/x),n):n;
Pow.a[][]=p/x;
MAT t=mod_pow(Pow,px-x+); // x~px的值都为p/x
Ans=Ans*t;
}
printf("%lld\n",Ans.a[][]);
} return ;
}

hdu6395 /// 分块矩阵快速幂的更多相关文章

  1. hdu6395 (矩阵快速幂+分块)

    Online Judge Online Exercise Online Teaching Online Contests Exercise Author F.A.Q Hand In Hand Onli ...

  2. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

  3. HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  4. [hdu-6395]Sequence 分块+矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时  加的下取整的数随 ...

  5. HDU6395 Sequence(矩阵快速幂+数论分块)

    题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...

  6. HDU - 6395 Sequence (整除分块+矩阵快速幂)

    定义数列: $\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_ ...

  7. HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution ...

  8. HDU6395(分段+矩阵快速幂)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6395 给你一个式子,给出你A,B,C,D,P,n,让你求出第n项的式子Fn.(其中ABCDPn均在1e9的 ...

  9. BZOJ2326 [HNOI2011]数学作业(分块矩阵快速幂)

    题意: 定义函数Concatenate (1 ..N)是将所有正整数 1, 2, …, N 顺序连接起来得到的数,如concatenate(1..5)是12345,求concatenate(1...n ...

随机推荐

  1. FrameWork内核解析之XMS内核管理(一)上篇

    阿里P7Android高级架构进阶视频免费学习请点击:https://space.bilibili.com/474380680本篇文章将继续从以下两个内容来介绍XMS内核管理之AMS: [Activi ...

  2. zabbix--External checks 外部命令检测

    概述zabbix server 运行脚本或者二进制文件来执行外部检测,外部检测不需要在被监控端运行任何 agentditem key 语法如下: 参数 定义 script shell 脚本或者二进制文 ...

  3. 【Java学习笔记之一】 java关键字及作用

    Java关键字及其作用 一. 总览: 访问控制 private protected public 类,方法和变量修饰符 abstract class extends final implements ...

  4. cas4.2.7 集群服务搭建

    cas服务端集群,网上资料很多,无非就是session共享,ticket共享. 但是session共享是必须的吗?或者能实现集群吗? 实践: 1. ticket共享,直接上代码 package org ...

  5. .net Windows Service 按装及遇到的问题

    一.注册方式1.cd C:\Windows\Microsoft.NET\Framework64\v4.0.30319\ 2.按装:InstallUtil -i E:\WorkAll\Finance\t ...

  6. IDEA webapp文件夹不识别解决方案

    使用IDEA 创建moudule 用的是的是maven archertype-quickstart ,自动生成并么有webapp目录,于是我从别的项目中拷贝了一个,发现webapp文件夹图标和普通文件 ...

  7. 每天一个Linux常用命令 cat命令

    在Linux系统中,cat命令是一个文本输出命令,通常用来查看某个文档的内容.它有如下三个功能: 1.一次性显示整个文件 如:查看/etc/initab文件,可以使用命令:cat/etc/initta ...

  8. oracle number 类型 只显示10位精度

    ,) show numwidth; 设置为15位 ; xa ------------------ 123456789012.12 或者 TO_CHAR(xa,'FM099999999999.09999 ...

  9. 前端学习(十三)js运算符(笔记)

    类型转换:    1.强制类型转换:(数字字符串转数字) parseInt()        parseFloat()        Number()--严格转换 NaN:            不是 ...

  10. Linux 操作系统介绍

    应用软件——操作系统——硬件 操作系统的作用 是现代计算机系统中最基本和最重要的系统软件 是配置在计算机硬件上的第一层软件,是对硬件系统的首次扩展 主要作用是管理好硬件设备,并为用户和应用程序提供一个 ...