题目大意:

F(1)=A, F(2)=B,  F(i)=C*F(i-2)+D*F(i-1)+p/i(向下取整)

给定A B C D p n

求F(n)

构造

   矩阵A    *    矩阵B        =          矩阵C

┌ F(n-2) F(n-1) 1  ┐    ┌ 0   C  0  ┐        ┌ F(n-1) F(n)   1   ┐

|      0  0   0    | *   |  1   D  0  |   =    |      0  0   0    |

└  0     0   0 ┘    └ 0  p/i 1 ┘  └  0     0   0 ┘

那么当A为第一项时  A*(B^n)=第n项

因为p/i向下取整所以在 1~n的范围中 p/i的数值是多段相等的

如n=10 p=15 那么1~n中 p/i为 15 7 5 3 3 2 2 1 1 1

改变B中的p/i 分别求B^len 即 B^1 B^1 B^1 B^2 B^2 B^3

已知 p / i = x 那么len = min( p / ( p / i ) , n )  都是int型向下取整

就得到了分块的 B^n

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LLINF 0x3f3f3f3f3f3f3f3f3f
#define LL long long
#define mem(i,j) memset(i,j,sizeof(i))
const int N=;
const int mod=1e9+; LL A,B,C,D,p,n;
struct MAT {
LL a[N][N];
MAT(){ mem(a,); }
MAT operator*(MAT p) {
MAT res;
for(int i=;i<N;i++)
for(int j=;j<N;j++)
for(int k=;k<N;k++)
res.a[i][j]=(res.a[i][j]+a[i][k]*p.a[k][j])%mod;
return res;
}
}Ans,Pow;
MAT mod_pow(MAT A,int x) {
MAT res;
res.a[][]=res.a[][]=res.a[][]=;
while(x) {
if(x&) res=res*A;
A=A*A; x>>=;
}
return res;
}
int main()
{
int t; scanf("%d",&t);
while(t--) {
scanf("%lld%lld%lld%lld%lld%lld",&A,&B,&C,&D,&p,&n);
Ans.a[][]=A, Ans.a[][]=B, Ans.a[][]=;
Pow.a[][]=Pow.a[][]=;
Pow.a[][]=C, Pow.a[][]=D;
for(int x=,px;x<=n;x=px+) {
px= p/x ? min(p/(p/x),n):n;
Pow.a[][]=p/x;
MAT t=mod_pow(Pow,px-x+); // x~px的值都为p/x
Ans=Ans*t;
}
printf("%lld\n",Ans.a[][]);
} return ;
}

hdu6395 /// 分块矩阵快速幂的更多相关文章

  1. hdu6395 (矩阵快速幂+分块)

    Online Judge Online Exercise Online Teaching Online Contests Exercise Author F.A.Q Hand In Hand Onli ...

  2. 杭电多校第七场 1010 Sequence(除法分块+矩阵快速幂)

    Sequence Problem Description Let us define a sequence as below f1=A f2=B fn=C*fn-2+D*fn-1+[p/n] Your ...

  3. HDU-6395 多校7 Sequence(除法分块+矩阵快速幂)

    Sequence Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  4. [hdu-6395]Sequence 分块+矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6395 因为题目数据范围太大,又存在递推关系,用矩阵快速幂来加快递推. 每一项递推时  加的下取整的数随 ...

  5. HDU6395 Sequence(矩阵快速幂+数论分块)

    题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...

  6. HDU - 6395 Sequence (整除分块+矩阵快速幂)

    定义数列: $\left\{\begin{eqnarray*} F_1 &=& A \\ F_2 &=& B \\ F_n &=& C\cdot{}F_ ...

  7. HDU6395-Sequence 矩阵快速幂+除法分块 矩阵快速幂模板

    目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog Problem:Portal传送门  原题目描述在最下面. Solution ...

  8. HDU6395(分段+矩阵快速幂)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=6395 给你一个式子,给出你A,B,C,D,P,n,让你求出第n项的式子Fn.(其中ABCDPn均在1e9的 ...

  9. BZOJ2326 [HNOI2011]数学作业(分块矩阵快速幂)

    题意: 定义函数Concatenate (1 ..N)是将所有正整数 1, 2, …, N 顺序连接起来得到的数,如concatenate(1..5)是12345,求concatenate(1...n ...

随机推荐

  1. 接口自动化测试框架-AIM2.0

    跳转到3.0版本https://www.cnblogs.com/df888/p/12031649.html AIM是我用python搭建的第一款接口自动化测试框架,随着技术的提升,框架也在升级,故有了 ...

  2. mysql三种连接方式

    sql四种连接方式demo: 表a 表b a.id与b.parent_id有关系 1.内连接:SELECT a.*,b.* from a INNER JOIN b ON a.id=b.parent_i ...

  3. mysql的时间存储格式

    虽然mysql提供了datatime和timestamp两种存储时间的格式,但是如果设计较多计算,应存INT(11)类型.

  4. grafana初体验

    1.centos版下载安装 wget https://s3-us-west-2.amazonaws.com/grafana-releases/release/grafana-5.0.4-1.x86_6 ...

  5. USACO Wifi Setup /// 贪心

    题目大意: 若在x处防止一个覆盖范围为r的wifi基站 可以覆盖 x-r 到 x+r 范围 花费为 A+B*r 给定n 给定n个奶牛的位置 求覆盖所有奶牛的最小费用 (可设置任意多个wifi基站) 贪 ...

  6. PAT程序设计

    VS2013中自行对齐的快捷键操作: CTRL+K+F 1.定义二维数组 ]=]; 2.绝对值函数 int abs(int i) 返回整型参数i的绝对值 double cabs(struct comp ...

  7. 为IIS服务器配置SSL,并设置为默认使用https协议访问网站

    要使网站支持https协议,需要SSL证书,我的服务器和域名都是在阿里云购买的,所以这里我演示阿里云获取SSL证书的方法 我先说下我的服务器环境:windows server 2012 + IIS8. ...

  8. VUE.JS 环境配置

    首先安装   node.js 网址 https://nodejs.org/en/ 选择版本 点击直接安装OK  (不用安装到系统盘) 然后cmd 命令框 输入 npm -version (查看安装版本 ...

  9. java多线程面试题选择题大全含答案

    v java多线程面试题选择题大全含答案 java多线程面试题选择题大全含答案 1.下面程序的运行结果()(选择一项)public static void main(String[] args) {T ...

  10. Qt 【QTableView + DIY delegate】

    通过继承QStyledItemDelegate类去实现自定义委托,达到这样的效果,因为本身Qlistview是单列多行有些信号处理的不好,所以使用QTableview多行多列去实现: 图片路径设置在r ...