1.数学定义

保序回归是回归算法的一种,基本思想是:给定一个有限的实数集合,训练一个模型来最小化下列方程:

并且满足下列约束条件:

2.算法过程说明

从该序列的首元素往后观察,一旦出现乱序现象停止该轮观察,从该乱序元素开始逐个吸收元素组成一个序列,直到该序列所有元素的平均值小于或等于下一个待吸收的元素。

举例:

原始序列:<9, 10, 14>

结果序列:<9, 10, 14>

分析:从9往后观察,到最后的元素14都未发现乱序情况,不用处理。

原始序列:<9, 14, 10>

结果序列:<9, 12, 12>

分析:从9往后观察,观察到14时发生乱序(14>10),停止该轮观察转入吸收元素处理,吸收元素10后子序列为<14, 10>,取该序列所有元素的平均值得12,故用序列<12, 12>替代<14, 10>。吸收10后已经到了最后的元素,处理操作完成。

原始序列:<14, 9, 10, 15>

结果序列:<11, 11, 11, 15>

分析:从14往后观察,观察到9时发生乱序(14>9),停止该轮观察转入吸收元素处理,吸收元素9后子序列为<14,9>。求该序列所有元素的平均值得12.5,由于12.5大于下个待吸收的元素10,所以再吸收10,得序列<14, 9, 10>。求该序列所有元素的平均值得11,由于11小于下个待吸收的元素15,所以停止吸收操作,用序列<11, 11, 11>替代<14, 9, 10>。

3.举例说明下面实验的原理

以某种药物的使用量为例子:

假设药物使用量为数组X=0,1,2,3,4….99,病人对药物的反应量为Y=y1,y2,y3…..y99 ,而由于个体的原因,Y不是一个单调函数(即:存在波动),如果我们按照药物反应排序,对应的X就会成为乱序,失去了研究的意义。而我们的研究的目的是为了观察随着药物使用量的递增,病人的平均反应状况。在这种情况下,使用保序回归,即不改变X的排列顺序,又求的Y的平均值状况。如下图所示:

从图中可以看出,最长的绿线x的取值约是30到60,在这个区间内,Y的平均值一样,那么从经济及病人抗药性等因素考虑,使用药量为30个单位是最理想的。

当前IT行业虚拟化比较流行,使用这种方式,找到合适的判断参数,就可以使用此算法使资源得到最大程度的合理利用。

4.实验代码

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state n = 100
##产生一个0-99的列表
x = np.arange(n)
##实例化一个np.random.RandomState的实例,作用是每次取的随机值相同
rs = check_random_state(0)
##randint(-50, 50):产生-50到50之间的整数
##np.log 求以e为低的对数
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ##设置保序回归函数
ir = IsotonicRegression()
##训练数据
y_ = ir.fit_transform(x, y) ##绘图
segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
##plt.gca().add_collection(lc),这两步就是画点与平均直线的连线
lc = LineCollection(segments) fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()

机器学习:保序回归(IsotonicRegression):一种可以使资源利用率最大化的算法的更多相关文章

  1. 103 保序回归 isotonic regression

    103 保序回归 isotonic regression 2016-03-30 11:25:27 bea_tree 阅读数 6895   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权 ...

  2. Spark机器学习(3):保序回归算法

    保序回归即给定了一个无序的数字序列,通过修改其中元素的值,得到一个非递减的数字序列,要求是使得误差(预测值和实际值差的平方)最小.比如在动物身上实验某种药物,使用了不同的剂量,按理说剂量越大,有效的比 ...

  3. 【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)

    目录 保序回归原理 保序回归代码(Spark Python) 保序回归原理 待续... 返回目录 保序回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/ ...

  4. scikit-learn一般实例之一:保序回归(Isotonic Regression)

    对生成的数据进行保序回归的一个实例.保序回归能在训练数据上发现一个非递减逼近函数的同时最小化均方误差.这样的模型的好处是,它不用假设任何形式的目标函数,(如线性).为了比较,这里用一个线性回归作为参照 ...

  5. Spark Mllib里如何采用保序回归做回归分析(图文详解)

    不多说,直接上干货! 相比于决策树,保序回归的应用范围没有决策树算法那么广泛. 特别在数据处理较为庞大的时候,采用保序回归做回归分析,可以极大地节省资源,从而提高计算效率. 保序回归的思想,是对数据进 ...

  6. scikit-learn: isotonic regression(保序回归,非常有意思,仅做知识点了解,但差点儿没用到过)

    http://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html#example-plot-isotonic-reg ...

  7. 掌握Spark机器学习库-07.14-保序回归算法实现房价预测

    数据集 house.csv 数据集概览 代码 package org.apache.spark.examples.examplesforml import org.apache.spark.ml.cl ...

  8. MLlib--保序回归

    转载请标明出处http://www.cnblogs.com/haozhengfei/p/24cb3f38b55e5d7516d8059f9f105eb6.html 保序回归 1.线性回归VS保序回归 ...

  9. 机器学习二 逻辑回归作业、逻辑回归(Logistic Regression)

    机器学习二 逻辑回归作业   作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57 ...

随机推荐

  1. python——面向对象基础

    概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最易被初学 ...

  2. 天方夜谈·数据结构·Queue

    "我在想Y的时候不能想X....." 什么叫做Queue(队列)?"队列是项的集合,对于每一项x和y,如果x在y之前离开对头,那么x一定在y之前进入队列--Sesh·Ve ...

  3. iOS开发 - Swift使用JavaScriptCore与JS交互

    一.前言 在这个提倡敏捷开发和H5横行的年代,原生App内嵌入一些H5页面已经成为一种流行的趋势.一套H5页面就可以适配复杂的iOS和Android页面,大量节省了开发和维护时间,如果本来就有移动端网 ...

  4. 手把手教做单点登录(SSO)系列之一:概述与示例

    本系列将由浅入深的结合示例.源码以及演示视频,手把手的带大家深入最新的单点登录SSO方案选型与架构开发实战.文末附5个满足不同单点登录场景的gif动画演示(如果看不清请在图片上右键用新窗口打开),本系 ...

  5. Thinkphp3.2学习——架构_URL模式

    入口文件是应用的单一入口,对应用的所有请求都定向到应用入口文件,系统会从URL参数中解析当前请求的模块.控制器和操作: http://serverName/index.php/模块/控制器/操作 这是 ...

  6. [刷题]算法竞赛入门经典(第2版) 5-4/UVa10763 - Foreign Exchange

    题意:有若干交换生.若干学校,有人希望从A校到B校,有的想从B到C.C到A等等等等.如果有人想从A到B也刚好有人想从B到A,那么可以交换(不允许一对多.多对一).看作后如果有人找不到人交换,那么整个交 ...

  7. linux下MongoDB客户端shell基本操作

    MongoDB 是一款NoSql数据库,没有固定的模式,即同一个集合中的不同文档结构可以不同,如:第一条记录{name:”xiaoming”},第二条记录:{name:”xiaoli”,age:15} ...

  8. Alamofire源码解读系列(十二)之请求(Request)

    本篇是Alamofire中的请求抽象层的讲解 前言 在Alamofire中,围绕着Request,设计了很多额外的特性,这也恰恰表明,Request是所有请求的基础部分和发起点.这无疑给我们一个Req ...

  9. iOS开发之判断用户是否打开APP通知开关

    一.前言 在多数移动应用中任何时候都只能有一个应用程序处于活跃状态,如果其他应用此刻发生了一些用户感兴趣的那么通过通知机制就可以告诉用户此时发生的事情.iOS中通知机制又叫消息机制,其包括两类:一类是 ...

  10. IE haslayout

    我们都知道浏览器有bug,而IE的bug似乎比大多数浏览器都多.IE的表现与其他浏览器不同的原因之一就是,显示引擎使用一个称为布局(layout)的内部概念.   因为布局是专门针对显示引擎内部工作方 ...