Bridging signals

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2354    Accepted Submission(s): 1536

Problem Description
'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place. At this late stage of the process, it is too
expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task?

Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged.

A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side.
Two signals cross if and only if the straight lines connecting the two ports of each pair do.

 
Input
On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p<40000, the number of ports on the two functional blocks. Then follow p lines, describing the signal mapping: On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.
 
Output
For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.
 
Sample Input
4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6
 
Sample Output
3
9
1
4
 
Source

/*----------------------------------------------
File: F:\ACM源代码\动态规划\最长上升子序列\HDU1950.cpp
Date: 2017/5/30 10:24:29
Author: LyuCheng
----------------------------------------------*/
#include <bits/stdc++.h>
#define MAXN 40005 using namespace std; int n,t,len;
int b[MAXN],d[MAXN];
int binary_seacher(int i){
int left,right,mid;
left=,right=len;
while(left<right){
mid=left+(right-left)/;
if(b[mid]>=d[i]) right=mid;
else left=mid+;
}
return left;
}
int main(int argc, char *argv[])
{
// freopen("in.txt","r",stdin);
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&d[i]);
}
b[]=d[];
len=;
for(int i=;i<=n;i++){
if(b[len]<d[i]){
b[++len]=d[i];
}else{
int pos=binary_seacher(i);
b[pos]=d[i];
}
}
printf("%d\n",len);
}
return ;
}

Bridging signals(NlogN最长上升子序列)的更多相关文章

  1. (hdu)1950 Bridging signals(最长上升子序列)

    Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip f ...

  2. POJ 1631 Bridging signals DP(最长上升子序列)

    最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...

  3. POJ 1631 Bridging signals (LIS:最长上升子序列)

    题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...

  4. POJ - 1631 Bridging signals(最长上升子序列---LIS)

    题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...

  5. HDU 1950 Bridging signals【最长上升序列】

    解题思路:题目给出的描述就是一种求最长上升子序列的方法 将该列数an与其按升序排好序后的an'求出最长公共子序列就是最长上升子序列 但是这道题用这种方法是会超时的,用滚动数组优化也超时, 下面是网上找 ...

  6. Bridging signals---hdu1950(最长上升子序列复杂度n*log(n) )

     题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1950 一直只知道有除n*n的算法之外的求LIS,但是没学过,也没见过,今天终于学了一下,dp[i]表 ...

  7. {POJ}{3903}{Stock Exchange}{nlogn 最长上升子序列}

    题意:求最长上升子序列,n=100000 思路:O(N^2)铁定超时啊....利用贪心的思想去找答案.利用栈,每次输入数据检查栈,二分查找替换掉最小比他大的数据,这样得到的栈就是更优的.这个题目确实不 ...

  8. 最长上升子序列算法(n^2 及 nlogn) (LIS) POJ2533Longest Ordered Subsequence

    问题描述: 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列 ...

  9. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

随机推荐

  1. ES6 Promise 对象

    Promise 的含义 Promise 是异步编程的一种解决方案,比传统的解决方案--回调函数和事件--更合理和更强大.它由社区最早提出和实现,ES6 将其写进了语言标准,统一了用法,原生提供了Pro ...

  2. hdu1116有向图判断欧拉通路判断

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  3. Zabbix(二) : Zabbix Server端配置文件说明

    Zabbix Server端配置文件说明 # This is a configuration file for Zabbix Server process # To get more informat ...

  4. 【DDD】业务建模实践 —— 人关注人

    社区业务领域中,存在‘人关注人’的场景,在这个场景中,关系较为复杂,且均表现在‘人’同一个业务实体上,因此,这个case的建模过程值得思考.本文将就‘人关注人’这个业务case的领域建模进行探讨,欢迎 ...

  5. C# 使用NPOI 导出Excel

    NPOI可以在没有安装Office的情况下对Word或Excel文档进行读写操作 下面介绍下NPOI操作Excel的方法 首先我们需要下载NPOI的程序集 下载地址 http://npoi.codep ...

  6. git仓库管理笔录

    Git是目前世界上最先进的分布式版本控制系统(没有之一). 小明做了个个人博客,放到了Git 仓库里面.第二天换了台电脑,只需要 git clone  克隆一下git 远程仓库的代码到本地即可.然后他 ...

  7. Java web 入门知识 及HTTP协议详解

     Java  web  入门知识 及HTTP协议详解 WEB入门 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资 ...

  8. 让EditPlus支持SQL高亮提示

    将文件放在一个确定的位置,不要放在桌面这些临时位置.然后在 EditPlus 的菜单栏选择 工具(T) -> 配置用户工具(C) 选择左边"类别"中的 文件 -> 设置 ...

  9. iOS 简单socket连接

    - (void)CreateSocket{ NSString *host = [self.realStreamDict objectForKey:@"StreamSeverIP"] ...

  10. Html 初识样式表&选择器

    样式表&类选择器分类 样式表分类: 1.内联式样式表:在标签内部写样式代码,精确但不方便,增加工作量,后期修改麻烦. 2.嵌入式样式表:一般写在head内 以<style>.... ...