What Is It?

A hash table, or associative array, is a well known key-value data structure. In R there is no equivalent, but you do have some options. You can use a vector of any type, a list, or an environment.

But as you’ll see with all of these options their performance is compromised in some way. In the average case a lookupash tabl for a key should perform in constant time, or O(1), while in the worst case it will perform in O(n) time,n being the number of elements in the hash table.

For the tests below, we’ll implement a hash table with a few R data structures and make some comparisons. We’ll create hash tables with only unique keys and then perform a search for every key in the table. Here’s our unique random string creator function:

library(plyr)
library(ggplot2) # Create n unique strings. We use upper and lower case letters only. Create
# length 1 strings first, and if we haven't satisfied the number of strings
# requested, we'll create length 2 strings, and so on until we've created n
# strings.
#
# Returns them in random order
#
unique_strings <- function(n){
string_i <- 1
string_len <- 1
ans <- character(n)
chars <- c(letters,LETTERS)
new_strings <- function(len,pfx){
for(i in 1:length(chars)){
if (len == 1){
ans[string_i] <<- paste(pfx,chars[i],sep='')
string_i <<- string_i + 1
} else {
new_strings(len-1,pfx=paste(pfx,chars[i],sep=''))
}
if (string_i > n) return ()
}
}
while(string_i <= n){
new_strings(string_len,'')
string_len <- string_len + 1
}
sample(ans)
}

Using a Vector

All vectors in R can be named, so let’s see how looking up a vector element by name compares to looking up an element by index.

Here’s our fake hash table creator:

# Create a named integer vector size n. Note that elements are initialized to 0
#
fake_hash_table <- function(n){
ans <- integer(n)
names(ans) <- unique_strings(n)
ans
}

Now let’s create hash tables size 210 thru 215 and search each element:

timings1 <- adply(2^(10:15),.mar=1,.fun=function(i){
ht <- fake_hash_table(i)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i)ht[names(ht)[j]]==0L)[3],
system.time(for (k in 1:i)ht[k]==0L)[3]),
index = c('1_string','2_numeric')
)
})

We perform element lookup by using an equality test, so

ht[names(ht)[j]]==0L

performs the lookup using a named string, while

ht[k]==0L

performs the lookup by index.

p1 <- ggplot(timings1,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Integer Vectors')
p1

So we see that as the hash size increases the time it takes to search all the keys by name is exponential, whereas searching by index is constant.

And note that we’re talking over 30 seconds to search the 215 size hash table, and I’ve got a pretty performant laptop with 8Gb memory, 2.7Ghz Intel processor with SSD drives.

Using a List

List elements can be named, right? They’re also more flexible than integer vectors since they can store any R object. What does their performance look like comparing name lookup to index lookup?

timings2 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht <- list()
lapply(strings, function(s) ht[[s]] <<- 0L)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht[[k]]==0L)[3]),
index = c('1_string','2_numeric')
)
})
p2 <- ggplot(timings2,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Lists')
p2

A little better but still exponential growth with named indexing. We cut our 30 seconds down to over 6 seconds for the large hash table, though.

Let’s see if we can do better.

Using an Environment

R environments store bindings of variables to values. In fact they are well suited to implementing a hash table since internally that’s how they are implemented!

e <- new.env()

# Assigning in the environment the usual way
with(e, foo <- 'bar') e
## <environment: 0x3e81d48>
ls.str(e)
## foo : chr "bar"

You can also use environments the same way one would use a list:

e$bar <- 'baz'
ls.str(e)
## bar : chr "baz"
## foo : chr "bar"

By default R environments are hashed, but you can also create them without hashing. Let’s evaluate the two:

timings3 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht1 <- new.env(hash=TRUE)
ht2 <- new.env(hash=FALSE)
lapply(strings, function(s){ ht1[[s]] <<- 0L; ht2[[s]] <<- 0L;})
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht2[[strings[k]]]==0L)[3]),
envir = c('2_hashed','1_unhashed')
)
})

Note that we’re performing the lookup by named string in both cases. The only difference is that ht1 is hashed and ht2 is not.

p3 <- ggplot(timings3,aes(x=size,y=seconds,group=envir)) +
geom_point(aes(color=envir)) + geom_line(aes(color=envir)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Environments')
p3

Bam! See that blue line? That’s near constant time for searching the entire 215 size hash table!

An interesting note about un-hashed environments: they are implemented with lists underneath the hood! You’d expect the red line of the above plot to mirror the red line of the list plot, but they differ ever so slightly in performance, with lists being faster.

In Conclusion

When you need a true associative array indexed by string, then you definitely want to use R hashed environments. They are more flexible than vectors as they can store any R object, and they are faster than lists since they are hashed. Plus you can work with them just like lists.

But using environments comes with caveats. I’ll explain in Part II.

转自:http://jeffreyhorner.tumblr.com/post/114524915928/hash-table-performance-in-r-part-i

Hash Table Performance in R: Part I(转)的更多相关文章

  1. [转载] 散列表(Hash Table)从理论到实用(上)

    转载自:白话算法(6) 散列表(Hash Table)从理论到实用(上) 处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通 ...

  2. DHT(Distributed Hash Table) Translator

    DHT(Distributed Hash Table) Translator What is DHT? DHT is the real core of how GlusterFS aggregates ...

  3. 数据结构 : Hash Table

    http://www.cnblogs.com/lucifer1982/archive/2008/06/18/1224319.html 作者:Angel Lucifer 引子 这篇仍然不讲并行/并发. ...

  4. Hash Map (Hash Table)

    Reference: Wiki  PrincetonAlgorithm What is Hash Table Hash table (hash map) is a data structure use ...

  5. 数据结构基础-Hash Table详解(转)

    理解Hash 哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping). 映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素.但反过来,集合B中的一个元素可能 ...

  6. 散列表(hash table)——算法导论(13)

    1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...

  7. 哈希表(Hash Table)

    参考: Hash table - Wiki Hash table_百度百科 从头到尾彻底解析Hash表算法 谈谈 Hash Table 我们身边的哈希,最常见的就是perl和python里面的字典了, ...

  8. Berkeley DB的数据存储结构——哈希表(Hash Table)、B树(BTree)、队列(Queue)、记录号(Recno)

    Berkeley DB的数据存储结构 BDB支持四种数据存储结构及相应算法,官方称为访问方法(Access Method),分别是哈希表(Hash Table).B树(BTree).队列(Queue) ...

  9. 几种常见 容器 比较和分析 hashmap, map, vector, list ...hash table

    list支持快速的插入和删除,但是查找费时; vector支持快速的查找,但是插入费时. map查找的时间复杂度是对数的,这几乎是最快的,hash也是对数的.  如果我自己写,我也会用二叉检索树,它在 ...

随机推荐

  1. asp.net core源码飘香:Logging组件

    简介: 作为基础组件,日志组件被其他组件和中间件所使用,它提供了一个统一的编程模型,即不需要知道日志最终记录到哪里去,只需要调用它即可. 使用方法很简单,通过依赖注入ILogFactory(Creat ...

  2. Sql server DATEADD日期函数的使用

    DATEADD日期函数 DATEADD() 函数在日期中添加或减去指定的时间间隔. 日:在当前日期上加两天 , ,'2014-12-30') 月:在当前日期上加两个月 , , 年:在当前日期上加两年 ...

  3. angular 过滤排序

    <table class="table"> <thead> <tr> <th ng-click="changeOrder('id ...

  4. stm32通过电调带动电机(可按键调速)

    这几天在做32通过电调带动电机的实验,上网一查,发现这方面的资料很少,经过自己的亲自实践,总结出以下经验,供大家参考. 论坛上也有很多人说自己在做,但是都遇到了同样的瓶颈.我想他们大多是pwm的频率和 ...

  5. AngularJS创建新指令 - 函数功能

    首先先介绍下AngularJS指令下的几种函数 Link函数和Scope 指令生成出的模板其实没有太多意义,除非它在特定的scope下编译.默认情况下,指令并不会创建新的子scope.更多的,它使用父 ...

  6. 使用vue-cli构建多页面应用+vux(一)

    众所皆知,vue对于构建单页面应该相当方便,但是在项目中难免遇到有多个页面的情况. 1.先安装vue-cli脚手架,具体步骤看vue-cli的官方github地址 https://github.com ...

  7. jvm的搭建

    首先先 说明一下接下来要用到的,环境变量中的path和classpath的区别 1.path路径用来告诉计算机.exe文件的路径,classpath路径是用来告诉计算机.class文件的路径 2.系统 ...

  8. js倒计时,秒倒计时,天倒计时

    按天倒计时 HTML代码1: <Script Language="JavaScript"> <!-- Begin var timedate= new Date(& ...

  9. JS模式--通用对象池的实现

    var objectPoolFactory = function (createObjFn) { var objectPool = []; return { create: function () { ...

  10. DirectFB 之 FillRectangle 绘制矩形

    1. 函数原型解析 函数声明: DFBResult FillRectangle (     IDirectFBSurface    *  thiz,      int     x,      int ...