Hash Table Performance in R: Part I(转)
What Is It?
A hash table, or associative array, is a well known key-value data structure. In R there is no equivalent, but you do have some options. You can use a vector of any type, a list, or an environment.
But as you’ll see with all of these options their performance is compromised in some way. In the average case a lookupash tabl for a key should perform in constant time, or O(1), while in the worst case it will perform in O(n) time,n being the number of elements in the hash table.
For the tests below, we’ll implement a hash table with a few R data structures and make some comparisons. We’ll create hash tables with only unique keys and then perform a search for every key in the table. Here’s our unique random string creator function:
library(plyr)
library(ggplot2) # Create n unique strings. We use upper and lower case letters only. Create
# length 1 strings first, and if we haven't satisfied the number of strings
# requested, we'll create length 2 strings, and so on until we've created n
# strings.
#
# Returns them in random order
#
unique_strings <- function(n){
string_i <- 1
string_len <- 1
ans <- character(n)
chars <- c(letters,LETTERS)
new_strings <- function(len,pfx){
for(i in 1:length(chars)){
if (len == 1){
ans[string_i] <<- paste(pfx,chars[i],sep='')
string_i <<- string_i + 1
} else {
new_strings(len-1,pfx=paste(pfx,chars[i],sep=''))
}
if (string_i > n) return ()
}
}
while(string_i <= n){
new_strings(string_len,'')
string_len <- string_len + 1
}
sample(ans)
}
Using a Vector
All vectors in R can be named, so let’s see how looking up a vector element by name compares to looking up an element by index.
Here’s our fake hash table creator:
# Create a named integer vector size n. Note that elements are initialized to 0
#
fake_hash_table <- function(n){
ans <- integer(n)
names(ans) <- unique_strings(n)
ans
}
Now let’s create hash tables size 210 thru 215 and search each element:
timings1 <- adply(2^(10:15),.mar=1,.fun=function(i){
ht <- fake_hash_table(i)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i)ht[names(ht)[j]]==0L)[3],
system.time(for (k in 1:i)ht[k]==0L)[3]),
index = c('1_string','2_numeric')
)
})
We perform element lookup by using an equality test, so
ht[names(ht)[j]]==0L
performs the lookup using a named string, while
ht[k]==0L
performs the lookup by index.
p1 <- ggplot(timings1,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Integer Vectors')
p1

So we see that as the hash size increases the time it takes to search all the keys by name is exponential, whereas searching by index is constant.
And note that we’re talking over 30 seconds to search the 215 size hash table, and I’ve got a pretty performant laptop with 8Gb memory, 2.7Ghz Intel processor with SSD drives.
Using a List
List elements can be named, right? They’re also more flexible than integer vectors since they can store any R object. What does their performance look like comparing name lookup to index lookup?
timings2 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht <- list()
lapply(strings, function(s) ht[[s]] <<- 0L)
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht[[k]]==0L)[3]),
index = c('1_string','2_numeric')
)
})
p2 <- ggplot(timings2,aes(x=size,y=seconds,group=index)) +
geom_point(aes(color=index)) + geom_line(aes(color=index)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Lists')
p2

A little better but still exponential growth with named indexing. We cut our 30 seconds down to over 6 seconds for the large hash table, though.
Let’s see if we can do better.
Using an Environment
R environments store bindings of variables to values. In fact they are well suited to implementing a hash table since internally that’s how they are implemented!
e <- new.env() # Assigning in the environment the usual way
with(e, foo <- 'bar') e
## <environment: 0x3e81d48>
ls.str(e)
## foo : chr "bar"
You can also use environments the same way one would use a list:
e$bar <- 'baz'
ls.str(e)
## bar : chr "baz"
## foo : chr "bar"
By default R environments are hashed, but you can also create them without hashing. Let’s evaluate the two:
timings3 <- adply(2^(10:15),.mar=1,.fun=function(i){
strings <- unique_strings(i)
ht1 <- new.env(hash=TRUE)
ht2 <- new.env(hash=FALSE)
lapply(strings, function(s){ ht1[[s]] <<- 0L; ht2[[s]] <<- 0L;})
data.frame(
size=c(i,i),
seconds=c(
system.time(for (j in 1:i) ht1[[strings[j]]]==0L)[3],
system.time(for (k in 1:i) ht2[[strings[k]]]==0L)[3]),
envir = c('2_hashed','1_unhashed')
)
})
Note that we’re performing the lookup by named string in both cases. The only difference is that ht1 is hashed and ht2 is not.
p3 <- ggplot(timings3,aes(x=size,y=seconds,group=envir)) +
geom_point(aes(color=envir)) + geom_line(aes(color=envir)) +
scale_x_log10(
breaks=2^(10:15),
labels=c(expression(2^10), expression(2^11),expression(2^12),
expression(2^13), expression(2^14), expression(2^15))
) +
theme(
axis.text = element_text(colour = "black")
) +
ggtitle('Search Time for Environments')
p3

Bam! See that blue line? That’s near constant time for searching the entire 215 size hash table!
An interesting note about un-hashed environments: they are implemented with lists underneath the hood! You’d expect the red line of the above plot to mirror the red line of the list plot, but they differ ever so slightly in performance, with lists being faster.
In Conclusion
When you need a true associative array indexed by string, then you definitely want to use R hashed environments. They are more flexible than vectors as they can store any R object, and they are faster than lists since they are hashed. Plus you can work with them just like lists.
But using environments comes with caveats. I’ll explain in Part II.
转自:http://jeffreyhorner.tumblr.com/post/114524915928/hash-table-performance-in-r-part-i
Hash Table Performance in R: Part I(转)的更多相关文章
- [转载] 散列表(Hash Table)从理论到实用(上)
转载自:白话算法(6) 散列表(Hash Table)从理论到实用(上) 处理实际问题的一般数学方法是,首先提炼出问题的本质元素,然后把它看作一个比现实无限宽广的可能性系统,这个系统中的实质关系可以通 ...
- DHT(Distributed Hash Table) Translator
DHT(Distributed Hash Table) Translator What is DHT? DHT is the real core of how GlusterFS aggregates ...
- 数据结构 : Hash Table
http://www.cnblogs.com/lucifer1982/archive/2008/06/18/1224319.html 作者:Angel Lucifer 引子 这篇仍然不讲并行/并发. ...
- Hash Map (Hash Table)
Reference: Wiki PrincetonAlgorithm What is Hash Table Hash table (hash map) is a data structure use ...
- 数据结构基础-Hash Table详解(转)
理解Hash 哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping). 映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素.但反过来,集合B中的一个元素可能 ...
- 散列表(hash table)——算法导论(13)
1. 引言 许多应用都需要动态集合结构,它至少需要支持Insert,search和delete字典操作.散列表(hash table)是实现字典操作的一种有效的数据结构. 2. 直接寻址表 在介绍散列 ...
- 哈希表(Hash Table)
参考: Hash table - Wiki Hash table_百度百科 从头到尾彻底解析Hash表算法 谈谈 Hash Table 我们身边的哈希,最常见的就是perl和python里面的字典了, ...
- Berkeley DB的数据存储结构——哈希表(Hash Table)、B树(BTree)、队列(Queue)、记录号(Recno)
Berkeley DB的数据存储结构 BDB支持四种数据存储结构及相应算法,官方称为访问方法(Access Method),分别是哈希表(Hash Table).B树(BTree).队列(Queue) ...
- 几种常见 容器 比较和分析 hashmap, map, vector, list ...hash table
list支持快速的插入和删除,但是查找费时; vector支持快速的查找,但是插入费时. map查找的时间复杂度是对数的,这几乎是最快的,hash也是对数的. 如果我自己写,我也会用二叉检索树,它在 ...
随机推荐
- R语言生成随机数
1.概述 作为一种语言进行统计分析,R有一个随机数生成各种统计分布功能的综合性图书馆.R语言可以针对不同的分布,生成该分布下的随机数.其中,有许多常用的个分布可以直接调用.本文简单介绍生成常用分布随机 ...
- 常见的Java面试题整理
面试是我们每个人都要经历的事情,大部分人且不止一次,这里给大家总结常见的面试题,让大家在找工作时候能够事半功倍. 1 Switch能否用string做参数? a.在 Java 7 之前, switch ...
- windows升级到1607后操作很卡顿的解决办法
CPU I5,固态128G,win7主系统,WIN10和WIN7都安装在固态硬盘上. 未升级之前,操作很流畅,以至于把家里的老古董电脑也换固态,系统换WIN10了.自从升级了1607后这个问题就出现了 ...
- struts2 之 struts2数据处理
开门见山,struts2的数据处理总结: 1. 在servlet中,如果要获取页面提交的数据要使用requerst.getParameter方法来获取,并且每次需要进行相关的类型转换工作,数据的获取及 ...
- CSS border实现各个方向等腰直角三角
CSS代码: .border_cort, .border_corr, .border_corb, .border_corl { display: inline-block; ; ; border-wi ...
- php写流程管理
流程控制即某个人发起一个流程,通过一层一层审核,通过后,完成整个流程,若有一层审核未通过,中断整个流程.即结束! 比如请假流程: 某一员工发起一个请假流程,那么这个流程的节点人员即他的上级,上上级,上 ...
- StringBuilder的实现
先看看MS给出的官方解释吧 (http://msdn.microsoft.com/zh-cn/library/system.text.stringbuilder(VS.80).aspx) String ...
- java复习(9)---数据库JDBC
java写工程当然需要连接数据库.JDBC技术是连接数据库和应用程序的纽带,本节主要说明如何连接数据库. java中提供sql类. package re09; import java.sql.*; p ...
- 【转载】google搜索从入门到精通
原文地址:http://www.cnblogs.com/helloIT/articles/5095668.html /***************************************** ...
- 【WPF】学习笔记(一)——做一个简单的电子签名板
参加实习(WPF)已经有两个多周的时间了,踩了一些坑,也算积累了一些小东西,准备慢慢拿出来分享一下.(●'◡'●) 这次呢就讲讲一个简单的电子签名板的实现. 先上张图(PS:字写得比较丑,不要太在意哈 ...