参考:http://www.cnblogs.com/subconscious/p/5058741.html

俗话说,好记性不如烂笔头~~~~

边学边记,方便以后查找~~~~~

一、介绍一下经典的神经网络

这个是人脑的神经网络,是不是很复杂啊~~~~~~科普成人的大脑里有1000亿的神经元(但怎么感觉大脑不够用啊~~~~可怕)

我来盗一波图~~~哈哈

上图2是经典的神经网络图,其中包括输入层3个,隐藏层4个,输出层2个。在设计一个神经网络的时候,输入层和输出层的节点数往往是固定不变的,中间的隐藏层则是自由指定的。这个结构图中的拓扑与箭头代表预测过程时数据的流向,但是这个和训练时还是有一定的区别的~~~~

重要的来了。。图2的一个圆圈代表一个神经元,连接线代表神经元之间的连接,每个连接线对应一个不同的权重,权重的值叫做权值,需要通过训练获得的。

 二、神经元

盗图的感觉真棒啊~~~~~

一个神经元的模型,包含输入,输出与计算功能的模型,上图就是3个输入,2个计算功能,1个输出,这些线每个都有一个权值。

(我有一个大胆的想法,可不可以把神经网络缩小化,变成一个神经元~~~两者真的很像)

由上图知,z是在输入和权值的线性加权和套了一个函数g的值。

神经元模型的使用时,可以这样理解:假设一个数据data,称之为样本。样本有4个属性,其中三个属性为已知a1,a2,a3,,一个属性为未知,z。我们需要做的是通过三个已知属性预测未知属性,z

z可以通过公式计算出来。

w权值的之间关系用矩阵表示

如图,两层的神经网络结构,

三、RNN / CNN/DNN

1.DNN神经网络有深度~~~~

2.CNN卷积神经网络

有时候参数数量的膨胀,容易过拟合,极易陷入局部最优。需要用‘卷积核’作为中介。同一个卷积核在所有图像内是共享的,图像通过卷积操作后仍然保留原先的位置关系。

3.RNN循环神经网络

因为全连接的DNN有一个问题---------无法对时间序列上的变化进行建模。

然而,样本出现时间顺序对于自然语言处理、语音识别等应用非常重要。

对了适应这种需求,RNN循环神经网络。

在RNN中,神经元的输出可以在下一个时间戳直接作用到自身(第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出)

RNN可以看成一个在时间上传递的神经网络,深度是时间的长度~~~

然而梯度消失现象还是要出现,且发生在时间轴上。对于t时刻来说,它产生的梯度在时间轴上向历史传播层之后就消失了,所以无法影响太遥远的过去。

神经网络NN笔记的更多相关文章

  1. tensorflow中使用mnist数据集训练全连接神经网络-学习笔记

    tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: ...

  2. Python机器学习笔记:卷积神经网络最终笔记

    这已经是我的第四篇博客学习卷积神经网络了.之前的文章分别是: 1,Keras深度学习之卷积神经网络(CNN),这是开始学习Keras,了解到CNN,其实不懂的还是有点多,当然第一次笔记主要是给自己心中 ...

  3. 人工神经网络NN

    [面向代码]学习 Deep Learning系列 http://blog.csdn.net/coolluyu/article/details/20214617 正则化的最小二乘法 深入浅出LSTM神经 ...

  4. 【cs231n】神经网络学习笔记3

    + mu) * v # 位置更新变了形式 对于NAG(Nesterov's Accelerated Momentum)的来源和数学公式推导,我们推荐以下的拓展阅读: Yoshua Bengio的Adv ...

  5. 【cs231n】神经网络学习笔记1

    神经网络推荐博客: 深度学习概述 神经网络基础之逻辑回归 神经网络基础之Python与向量化 浅层神经网络 深层神经网络 前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专 ...

  6. Python神经网络编程笔记

    神经元 想一想便知道,当一个人捏你一下以至于你会痛得叫起来的力度便是神经元的阈值,而我们构建的时候也是把这种现象抽象成一个函数,叫作激活函数. 而这里便是我们使用sigmoid函数的原因,它是一个很简 ...

  7. 卷积神经网络学习笔记——Siamese networks(孪生神经网络)

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 在整理这些知识点之前,我 ...

  8. 卷积神经网络学习笔记——SENet

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和SE ...

  9. BP神经网络学习笔记_附源代码

    BP神经网络基本原理: 误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法.由于BP算法过程包含从输出节点开始,反向地向第一隐含层(即最接 ...

随机推荐

  1. CSS样式命名整理(非原创)

    非原创,具体出自哪里忘了,如果侵害您的利益,请联系我. CSS样式命名整理 页面结构 容器: container/wrap 整体宽度:wrapper 页头:header 内容:content 页面主体 ...

  2. vim编辑器介绍及其常用命令

    vim简单的介绍 Vim 编辑器是一个模式编辑器 . 这意味着在不同状态下编辑器有不同的行为模式 . 两个基本的模式是 Normal 模式和 Insert 模式 ,还有可视模式. 在 Normal 模 ...

  3. SQL 之存储过程

    存储过程 是用来执行管理任务或应用复杂的业务规则, 存储过程中可以包含逻辑控制语句和数据操纵语句,它可以接受参数.输出参数.返回单个或多个结果集以及返回值. 存储过程的优点 存储过程已在服务器注册 执 ...

  4. let和const命令

    let命令 1.let用来声明变量,类似于var,但只在代码块内有效. { let a = 1; var b = 2; } console.log(a); //a is not defined con ...

  5. 简单说下 Winform 的分页快速开发框架必须要实现的几个功能之一

    简单说下 Winform 的分页快速开发框架必须要实现的几个功能之一 分页非为前端分页  和 后端分页,前端分页只有适用于B/S,B/S的呈现速度远远不如C/S,而C/S则没有这个问题,所以分页必然是 ...

  6. Python函数中如何定义参数

    一.位置参数:根据函数定义时的参数位置传递参数#形参和实参的个数必须一致def fun1(): print("运行结果") print("this is fun1(),n ...

  7. jQuery操作input改变value属性值

    今天写了一个表单元素,在用户点击的时候会清空input中的内容,当鼠标点击其他地方的时候会把输入的值保存为input的value值 类似于这样的效果 当用户点击的时候文字消失. html代码 < ...

  8. SpringCloud学习笔记(3)——Hystrix

    参考Spring Cloud官方文档第13.14.15章 13. Circuit Breaker: Hystrix Clients Netflix提供了一个叫Hystrix的类库,它实现了断路器模式. ...

  9. Solidity教程系列1 - 类型介绍

    现在的Solidity中文文档,要么翻译的太烂,要么太旧,决定重新翻译下,再加上代码事例讲解. 写在前面 Solidity是以太坊智能合约编程语言,阅读本文前,你应该对以太坊.智能合约有所了解, 如果 ...

  10. Linux EXT 文件系统 详解

    上几章我们讲到了Linux启动的一些问题,接下来我们来看一下硬盘分割和EXT格式文件系统的问题.前面提到了分区表的问题,分区表位于MBR, 占用64个字节.所谓的硬盘分区也就是对硬盘进行规划,填写分区 ...