CF 1110 D/E
题目大意:给你\(n\)个瓷砖,每块瓷砖上有一个数字\(a_i,(1\leq a_i\leq m)\)。你可以将三个有连续数字\((比如3,4,5)\)的瓷砖或者三个数字相同\((比如7,7,7)\)的瓷砖组成一个三元组。每个瓷砖只能用一次。问最多可以得到多少个三元组。
比赛的时候好像全场A穿,然而并没有想到 (TAT。
一开始想到\(DP\),但是觉得状态数太大;于是想了奇奇怪怪的贪心,但是都能找到反例。
这道题的关键是要发现一个性质:同一位置上连续三个瓷砖匹配不会超过\(2\)个。因为如果凑够了\(3\)个就可以分别单独匹配了。这样一来状态数就少了:设\(f[i][j][k]\)表示\(DP\)到编号为\(i\)的瓷砖,以\(i-1\)结尾的连续匹配进行了\(j\)次,以\(i\)结尾的连续匹配进行了\(k\)次的最大三元组数。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define N 1000005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,m;
int f[N][3][3],sum[N];
int main() {
n=Get(),m=Get();
int a;
for(int i=1;i<=n;i++) {
a=Get();
sum[a]++;
}
memset(f,-0x3f,sizeof(f));
f[2][0][0]=0;
for(int i=2;i<m;i++) {
for(int j=0;j<3;j++) {
for(int k=0;k<3;k++) {
if(f[i][j][k]<0) continue ;
for(int q=0;q<3;q++) {
if(sum[i+1]<q) break;
if(sum[i]<k+q) break;
if(sum[i-1]<j+k+q) break;
f[i+1][k][q]=max(f[i+1][k][q],f[i][j][k]+(sum[i-1]-j-k-q)/3+q);
}
}
}
}
int ans=0;
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
ans=max(ans,f[m][i][j]+(sum[m]-j)/3+(sum[m-1]-i-j)/3);
cout<<ans;
return 0;
}
总结:发现这种非一般套路的\(DP\)或者贪心题时要去发现题目的特殊性质,往往特殊性质是解题的关键。
题目大意:给你两个长度为\(n\)的序列\(c\)和\(t\)。你可以对\(c\)进行任意次操作,每次操作选取位置\(i(2\leq i\leq n-1)\),然后将\(c_i\)变成\(c_{i-1}+c_{i+1}-c_i\)。
这题太神了,不过好像比赛时也被A穿了。
我们设\(d_i=c_{i+1}-c_i(1\leq i \leq n-1)\)。我们会发现,对\(c_i\)进行上述操作后,交换了\(d_{i-1}\)与\(d_i\)。
所以我们将两个数列的\(d\)数组求出来,排序后直接比较就行了。还有要判断\(c_1==t_1\)。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define ll long long
#define N 200005
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n;
int c[N],t[N];
int dc[N],dt[N];
int main() {
n=Get();
for(int i=1;i<=n;i++) c[i]=Get();
for(int i=1;i<=n;i++) t[i]=Get();
for(int i=1;i<n;i++) dc[i]=c[i+1]-c[i];
for(int i=1;i<n;i++) dt[i]=t[i+1]-t[i];
if(c[1]!=t[1]) {cout<<"No";return 0;}
sort(dc+1,dc+n);
sort(dt+1,dt+n);
for(int i=0;i<=n;i++) {
if(dc[i]!=dt[i]) {cout<<"No";return 0;}
}
cout<<"Yes";
return 0;
}
CF 1110 D/E的更多相关文章
- cf 1110 D
哇真难啊,没注意到 可以开 dp[N][3][3]这种性质,也就是三个相同的顺子可以变成三个刻子,所以我们维护顺子的数目就不用超过三了,又因为每张牌i,只会被i-1,i-2,影响,所以额外开两维记录( ...
- CF 1110 E. Magic Stones
E. Magic Stones 链接 题意: 给定两个数组,每次可以对一个数组选一个位置i($2 \leq i \leq n - 1$),让a[i]=a[i-1]+a[i+1]-a[i],或者b[i] ...
- CF 1110 D. Jongmah
D. Jongmah 链接 题意: 一些数字,有两种方式组成一个三元组,[x,x,x],[x,x+1,x+2],每个数字只能用一次,求最多组成多少三元组. 分析: 因为每三个[x,x+1,x+2]是可 ...
- CF - 1110 C Meaningless Operations
题目传送门 题解: 首先根据观察,很容易发的是: x != (1<<k) - 1 时候 答案就是, 将x二进制下再最高位后的0都变成1. 然后就是考虑 x == (1<<k) ...
- CodeForces Contest #1110: Global Round 1
比赛传送门:CF #1110. 比赛记录:点我. 涨了挺多分,希望下次还能涨. [A]Parity 题意简述: 问 \(k\) 位 \(b\) 进制数 \(\overline{a_1a_2\cdots ...
- 做题记录 To 2019.2.13
2019-01-18 4543: [POI2014]Hotel加强版:长链剖分+树形dp. 3653: 谈笑风生:dfs序+主席树. POJ 3678 Katu Puzzle:2-sat问题,给n个变 ...
- CF 553A 组合DP
http://codeforces.com/problemset/problem/553/A A. Kyoya and Colored Balls time limit per test 2 seco ...
- ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'
凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
随机推荐
- PHP中如何给日期加上一个月/天
使用php的strtotime实例:比如现在时间是“2017-07-06”,加一个月. echo date("Y-m-d", strtotime("+1 months&q ...
- SpringBoot 配置静态资源映射
SpringBoot 配置静态资源映射 (嵌入式servlet容器)先决知识 request.getSession().getServletContext().getRealPath("/& ...
- Java高并发--CPU多级缓存与Java内存模型
Java高并发--CPU多级缓存与Java内存模型 主要是学习慕课网实战视频<Java并发编程入门与高并发面试>的笔记 CPU多级缓存 为什么需要CPU缓存:CPU的频率太快,以至于主存跟 ...
- redirection in linux
2>&1 # Redirects stderr to stdout. # Error messages get sent to same place as standard output ...
- 1; XHTML 基本知识
万维网是我们这个时代最重要的信息传播手段.几乎任何人都可以创建自己的网站,然后把它发布在因特网上.一些网页属于企业,提供销售服务:另一些网页属于个人,用来分享信息.你可以自己决定网页的内容和风格.所有 ...
- canvas-8searchLight2.html
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- JS怎样实现图片的懒加载以及jquery.lazyload.js的使用
在项目中有时候会用到图片的延迟加载,那么延迟加载的好处是啥呢? 我觉得主要包括两点吧,第一是在包含很多大图片长页面中延迟加载图片可以加快页面加载速度:第二是帮助降低服务器负担. 下面介绍一下常用的延迟 ...
- 洛谷P2866 [USACO06NOV]糟糕的一天Bad Hair Day(单调栈)
题目描述 Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self ...
- 洛谷P4170 [CQOI2007]涂色(区间dp)
题意 题目链接 Sol 震惊,某知名竞赛网站竟照搬省选原题! 裸的区间dp,\(f[l][r]\)表示干掉\([l, r]\)的最小花费,昨天写的时候比较困于是就把能想到的转移都写了.. // luo ...
- 【读书笔记】iOS-使用钥匙串保护数据
一,将应用从设备上删除时,并不会删除其钥匙串项,这使得调试工作困难得多.模拟器有一个Reset Contents and Settings选项,可用于将钥匙串项移除.因此,强烈建议在模拟器上确定Key ...