Spark提高篇——RDD/DataSet/DataFrame(二)
该部分分为两篇,分别介绍RDD与Dataset/DataFrame:
二、DataSet/DataFrame
该篇主要介绍DataSet与DataFrame。
一、生成DataFrame
1.1.通过case class构造DataFrame
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataFrameTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataFrameTest")
.getOrCreate() import spark.implicits._
val caseClassDF = Seq(Person(1, "lily", 18), Person(2, "lucy", 20)).toDF("id", "name", "age")
println("=========== show: ============")
caseClassDF.show()
println("=========== schema: ===========")
caseClassDF.printSchema() spark.stop()
}
}
这里通过“import spark.implicits._
”使用了隐式Encoder,否则无法调用“.toDF()”,这里的spark为上面定义的sparkSession变量,并不是“import org.apache.spark”,注意不要混淆。
运行结果:
可以看到,我们将两个Person实例封装为DataFrame实例,之后便可以像操作表/视图一样来对其进行其他处理了。
1.2.通过数值构造DataFrame
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataFrameTest {
def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataFrameTest")
.getOrCreate() import spark.implicits._
val valueDF = Seq(1, 2, 3).toDF("id")
println("=========== show: ============")
valueDF.show()
println("=========== schema: ===========")
valueDF.printSchema() spark.stop()
}
}
通过这个和上面的例子可以看到,我们可以通过Seq将任何值类型对象转换为DataFrame对象,Seq类似于Java的List。
运行结果:
1.3.通过SparkSession读取数据
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataFrameTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataFrameTest")
.getOrCreate() // 默认将整行定义为value: String, 可以为空
val hdfsDF = spark.read.text(dataPath) println("=========== show: ============")
hdfsDF.show()
println("=========== schema: ===========")
hdfsDF.printSchema() val personEncoder: Encoder[Person] = Encoders.product val personDF = hdfsDF.map(row => {
//val value = row.getAs[String]("value")
val value = row.getString(0)
val fields = value.trim.split(",")
Person(Integer.parseInt(fields(0)), fields(1), Integer.parseInt(fields(2)))
})(personEncoder).toDF() println("=========== show: ============")
personDF.show()
println("=========== schema: ===========")
personDF.printSchema() spark.stop()
}
}
运行结果:
可以看到,“spark.read.text(dataPath)”默认将文件中的一行定义为String类型的value字段,可以通过get(0)、getString(0)或getAs[String]("value")来获取value的内容。
这里我们没有使用“import spark.implicits._”将Person隐式Encoder,而是通过“val personEncoder: Encoder[Person] = Encoders.product”显式定义一个Encoder[Person]类型的变量,并调用“hdfsDF.map(...)(personEncoder)”来显式Encoder,并在map之后调用".toDF"将map的结果转换为DataFrame,map的结果为DataSet类型,所以DataSet可以直接调用“.toDF”转换为DataFrame。如果使用“import spark.implicits._” ,就不需要定义“personEncoder”变量,也不需要为map的最后一个参数赋值。
1.4.通过RDD转换为DataFrame
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataFrameTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataFrameTest")
.getOrCreate() import spark.implicits._
val rddDF = spark.sparkContext.textFile(dataPath)
.map(row => row.split(","))
.map(fields => Person(Integer.parseInt(fields(0)), fields(1), Integer.parseInt(fields(2))))
.toDF("id", "name", "age") println("=========== show: ============")
rddDF.show()
println("=========== schema: ===========")
rddDF.printSchema() spark.stop()
}
}
可以看到,RDD转换为DataFrame与通过Seq生成DataFrame一样,都需要“import spark.implicits._”,否则无法调用“.toDF”。
运行结果:
二、生成DataSet
2.1.通过case class构造DataSet
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataSetTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataSetTest")
.getOrCreate() import spark.implicits._
val caseClassDs = Seq(Person(1, "lily", 18), Person(2, "lucy", 20))
.toDS() println("=========== show: ============")
caseClassDs.show()
println("=========== schema: ===========")
caseClassDs.printSchema() spark.stop()
}
}
可以看到,类似于1.1,只需要将“.toDF”换为“.toDS”即可得到DataSet类型的结果。
运行结果:
可以看到其结构等于DF。
2.2.通过数值构造DataSet
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataSetTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataSetTest")
.getOrCreate() import spark.implicits._ val valueDs = Seq(1, 2, 3).toDS() println("=========== show: ============")
valueDs.show()
println("=========== schema: ===========")
valueDs.printSchema() spark.stop()
}
}
运行结果:
可以看到,其结构类似于DF,但是列名默认为value。
2.3.通过SparkSession读取数据
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataSetTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataSetTest")
.getOrCreate() // 默认将整行定义为value: String, 可以为空
val hdfsDF = spark.read.text(dataPath) println("=========== show: ============")
hdfsDF.show()
println("=========== schema: ===========")
hdfsDF.printSchema() val personEncoder: Encoder[Person] = Encoders.product val personDs = hdfsDF.map(row => {
val value = row.getAs[String]("value")
//val value = row.getString(0)
val fields = value.trim.split(",")
Person(Integer.parseInt(fields(0)), fields(1), Integer.parseInt(fields(2)))
})(personEncoder) println("=========== show: ============")
personDs.show()
println("=========== schema: ===========")
personDs.printSchema() spark.stop()
}
}
通过1.3与2.3可以看到,SparkSession读取文件(SparkSession.read.*)得到的为DataFrame,DataFrame经过map、filter等操作后得到的为DataSet,DataSet又可以通过“.toDF”转换为DataFrame,这也印证了官网对DataFrame的定义:
type DataFrame = DataSet[Row]
2.4.通过RDD转换为DataSet
package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataSetTest { case class Person(id: Int, name: String, age: Int) def main(args: Array[String]): Unit = {
val dataPath = "hdfs://192.168.60.164:9000/user/name/input" val spark = SparkSession
.builder()
.appName("DataSetTest")
.getOrCreate() import spark.implicits._
val rddDS = spark.sparkContext.textFile(dataPath)
.map(row => row.split(","))
.map(fields => Person(Integer.parseInt(fields(0)), fields(1), Integer.parseInt(fields(2))))
.toDS() println("=========== show: ============")
rddDS.show()
println("=========== schema: ===========")
rddDS.printSchema() spark.stop()
}
}
类似于1.4,只需要将“.toDF”替换为“.toDS”即可得到DataSet类型的结果。
通过以上(一)、(二)内容我们看到了如何将文件、数值、对象、RDD转换为DataSet/DataFrame,以及DataSet与DataFrame之间如何互转,如何隐式/显式使用Encoder。
接下来介绍基于DataSet/DataFrame可以进行哪些操作。
三、基于DataSet/DataFrame的操作
除了上例中用到的map,还有filter、count、first、foreach、reduce等同样可以基于RDD进行的操作,此外,还有几个特殊操作:
3.1. select
select可以接受一个或多个参数,用于从DataSet/DataFrame中获取指定字段。
3.2. createOrReplaceTempView
createOrReplaceTempView用于将DataSet/DataFrame的数据临时保存为视图,方便后续使用SparkSession.sql()进行操作,Session结束时生命周期结束。
3.3. printSchema
如(一)(二)中示例所示,printSchema用于打印DataSet/DataFrame数据集的树形结构定义。
3.4. withColumnRenamed
withColumnRenamed用于对列重命名,类似于sql语句“select a as aa, b as bb from table”中的as。
3.5. join
join用于按指定的join表达式与join类型(默认为inner join)将另一个DataSet/DataFrame与当前DataSet/DataFrame合并。
这里举一个不完整的例子,用以演示基于DataSet/DataFrame的操作。
val exposureLogEncoder: Encoder[ExposureLog] = Encoders.product
val exposureLogTupleEncoder: Encoder[Tuple1[ExposureLog]] = Encoders.product
// 计数器
val dataCounter = spark.sparkContext.longAccumulator("dataCounter")
val legalDataCounter = spark.sparkContext.longAccumulator("legalDataCounter")
val illegalAvCounter = spark.sparkContext.longAccumulator("illegalAvCounter")
val illegalKvCounter = spark.sparkContext.longAccumulator("illegalKvCounter")
val illegalReportkeyCounter = spark.sparkContext.longAccumulator("illegalReportkeyCounter") // 1.曝光日志: select id,ei,av,ui,kv from mta_t_boss_v1_5362
val exposureLogDF = HiveUtil.readTableByPartition(tdw, exposure, spark, partition)
if (exposureLogDF == null) {
System.exit(2)
}
val exposureLogDS = exposureLogDF.select("id", "ei", "ei", "av", "ui", "kv", "log_time")
.filter(row => {
dataCounter.add(1)
val av = row.getAs[String]("av")
if (av == null
|| av.trim.startsWith("1.6.2")
|| av.compareTo("0.9.5")<0) {
illegalAvCounter.add(1)
false
}
else true
})
.filter(row => {
val kv = row.getAs[String]("kv")
if (kv == null || kv.trim.length == 0) {
illegalKvCounter.add(1)
false
}
else true
})
.map(row =>parseExposure(row))(exposureLogTupleEncoder)
.filter(exposure => {
val obj = exposure._1
if (obj == null) {
illegalReportkeyCounter.add(1)
false
}
else {
legalDataCounter.add(1)
true
}
})
.map(row => row._1)(exposureLogEncoder) val resultCount = exposureLogDS.persist().count()
println(s"Data count: ${dataCounter.value}")
println(s"Legal data count: ${legalDataCounter.value}")
println(s"Result count: ${resultCount}")
println(s"Illegal av count: ${illegalAvCounter.value}")
println(s"Illegal kv count: ${illegalKvCounter.value}")
println(s"Illegal reportKey count: ${illegalReportkeyCounter.value}") // 1.save log info to hdfs
exposureLogDS.persist().map(exposure => exposure.toString())(Encoders.STRING)
.write.mode(SaveMode.Overwrite).text(logSavePath)
println(s"[INFO] save log to ${logSavePath} success.") exposureLogDS.persist().select("sign", "channel").createOrReplaceTempView("log")
val sql = "select sign, channel, count(*) as data_count " +
"from log " +
"group by sign, channel"
val aggDF = ss.sql(sql) aggDF.printSchema()
// 2.save log statistics info to hdfs
aggDF.map(row => row.mkString(","))(Encoders.STRING)
.repartition(1)
.write.mode(SaveMode.Overwrite)
.text(logStatisticsInfoSavePath)
println(s"[INFO] save statistics info to ${logStatisticsInfoSavePath} success.")
注:HiveUtil.readTableByPartition()为自定义函数,用于从hive中读取指定数据库/表/分区的数据,结果为DataFrame类型。
上例从hive中读取数据后,使用select获取指定字段,然后使用filter根据指定字段进行非法数据过滤,之后再调用map进行数据预处理、解析等工作,之后在调用filter进行空数据过滤,最后使用map对Tuple1拆箱。之后将处理结果通过map构造为字符串并保存到hdfs,同时使用createOrReplaceTempView创建临时视图,再通过SparkSession.sql对视图进行聚合操作,以统计sign,channel纬度的记录数,之后使用printSchema打印sql操作后数据集的schema结构,最后将聚合后的统计信息通过map构造为字符串保存到hdfs。可以看到日常数据处理过程中会经常遇到如上例一般的需求。
另外,提一下,使用Accumulator的时候要保证只执行一次action操作,否则需要执行cache或者persist来保证计数器不重复计数,如上例中重复使用了exposureLogDS,如果不执行persist/cache会导致计数器重复计数。
另外,注意例中第一个map返回的结构为Tuple1[ExposureLog],之所以将ExposureLog又包了一层,是因为“Product type is represented as a row, and the entire row can not be null in Spark SQL like normal databases”,所以如果需要返回null对象,就需要对其装箱,使返回值为非空对象,再在后续流程(如最后一个filter 、map)中拆箱。
其他操作可以参考官网API:
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.Dataset
Spark提高篇——RDD/DataSet/DataFrame(二)的更多相关文章
- Spark提高篇——RDD/DataSet/DataFrame(一)
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD ...
- RDD&Dataset&DataFrame
Dataset创建 object DatasetCreation { def main(args: Array[String]): Unit = { val spark = SparkSession ...
- Maven提高篇系列之(二)——配置Plugin到某个Phase(以Selenium集成测试为例)
这是一个Maven提高篇的系列,包含有以下文章: Maven提高篇系列之(一)——多模块 vs 继承 Maven提高篇系列之(二)——配置Plugin到某个Phase(以Selenium集成测试为例) ...
- Spark SQL 之 RDD、DataFrame 和 Dataset 如何选择
引言 Apache Spark 2.2 以及以上版本提供的三种 API - RDD.DataFrame 和 Dataset,它们都可以实现很多相同的数据处理,它们之间的性能差异如何,在什么情况下该选用 ...
- Spark中的RDD和DataFrame
什么是DataFrame 在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格. RDD和DataFrame的区别 DataFrame与RDD的主要区别在 ...
- RDD/Dataset/DataFrame互转
1.RDD -> Dataset val ds = rdd.toDS() 2.RDD -> DataFrame val df = spark.read.json(rdd) 3.Datase ...
- Spark 论文篇-RDD:一种为内存化集群计算设计的容错抽象(中英双语)
论文内容: 待整理 参考文献: Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster C ...
- spark SQL、RDD、Dataframe总结
- 谈谈RDD、DataFrame、Dataset的区别和各自的优势
在spark中,RDD.DataFrame.Dataset是最常用的数据类型,本博文给出笔者在使用的过程中体会到的区别和各自的优势 共性: 1.RDD.DataFrame.Dataset全都是spar ...
随机推荐
- Document.write和 getElementById(ID)
在javascript中,document.write()方法:常用来网页向文档中输出内容. 示例:通过document.write()方法,向网页文档中输出了一段文字. document.write ...
- SpringCloud消息总线
我们在springcloud(七):配置中心svn示例和refresh中讲到,如果需要客户端获取到最新的配置信息需要执行refresh,我们可以利用webhook的机制每次提交代码发送请求来刷新客户端 ...
- 跨域资源共享(CROS)
跨域资源共享(CROS) 同源策略(Same Origin Policy, SOP) 同源策略允许运行在页面的脚本可以无限制的访问同一个网站(同源)中其他脚本的任何方法和属性.当不同网站页面(非同源) ...
- Java File类与文件IO流总结
1.File类 File类被定义为“文件和目录路径名的抽象表示形式”,这是因为File类既可以表示“文件”也可以表示“目录”,他们都通过对应的路径来描述.通过构造函数创建一个File类对象,则该对象就 ...
- linux vsftp 简单配置
查看自己是否安装vsftp rpm -qa | grep vsftp rpm -qa 查看自己已安装的包 过滤vsftp systemctl rsetart vsftpd 重启服务 先关闭防火墙 sy ...
- 【腾讯Bugly干货分享】Android 新一代多渠道打包神器
关于作者: 李涛,腾讯Android工程师,14年加入腾讯SNG增值产品部,期间主要负责手Q动漫.企鹅电竞等项目的功能开发和技术优化.业务时间喜欢折腾新技术,写一些技术文章,个人技术博客:www.lt ...
- 一个xss漏洞到内网漫游【送多年心血打造的大礼包啦!】
i春秋作家:jasonx 原文来自:一个xss漏洞到内网漫游[送多年心血打造的大礼包啦!] 前言 渗透过程中,有时候遇某些网站,明明检测到有xss漏洞,但是盲打以后,收到的cookie还是不能登录后台 ...
- Spring-Data-Jpa环境配置与实际应用
上次我们讲述了<Spring-Data-Jpa概述与接口>,接下来我们再讲讲Spring-Data-Jpa环境配置与实际应用. Spring-Data 方法定义规范与使用配置 简单条件查询 ...
- 脑残式网络编程入门(五):每天都在用的Ping命令,它到底是什么?
本文引用了公众号纯洁的微笑作者奎哥的技术文章,感谢原作者的分享. 1.前言 老于网络编程熟手来说,在测试和部署网络通信应用(比如IM聊天.实时音视频等)时,如果发现网络连接超时,第一时间想到的就是 ...
- Python中list的删除del&remove小区别
del删除时候指定下标,remove必须指定具体的值