题目大意:维护一个序列,支持区间加、区间染色、区间最值查询、区间和查询。

题解:对于区间赋值操作来说,维护一个赋值标记,注意,这里不能直接用赋值的值直接维护,因为不像加法标记,0 表示不用处理,这里 0 会表示成将区间赋值为 0,在这里卡了一小会QAQ。另外,关于多标记线段树下传的规则,可以考虑两种不同的下传方式,将序列最终的值表示出来,在额外考虑加入优先级高的标记,如果对优先级低的标记产生了不好的影响,则优先级关系应该相反。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10; inline long long read(){
long long x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,m;
long long a[maxn];
char op[10];
struct node{
#define ls(x) t[x].lc
#define rs(x) t[x].rc
int lc,rc;
long long sum,mx,mi,stag,atag;bool s;
}t[maxn<<1];
int tot,root;
inline void pushup(int o){
t[o].mi=min(t[ls(o)].mi,t[rs(o)].mi);
t[o].mx=max(t[ls(o)].mx,t[rs(o)].mx);
t[o].sum=t[ls(o)].sum+t[rs(o)].sum;
}
inline void pushdown(int o,int l,int r){
int mid=l+r>>1;
if(t[o].s){
t[ls(o)].stag=t[o].stag,t[ls(o)].atag=0,t[ls(o)].sum=(mid-l+1)*t[o].stag,t[ls(o)].mi=t[ls(o)].mx=t[o].stag,t[ls(o)].s=1;
t[rs(o)].stag=t[o].stag,t[rs(o)].atag=0,t[rs(o)].sum=(r-mid)*t[o].stag,t[rs(o)].mi=t[rs(o)].mx=t[o].stag,t[rs(o)].s=1;
t[o].s=0;
}
if(t[o].atag){
t[ls(o)].atag+=t[o].atag,t[ls(o)].sum+=(mid-l+1)*t[o].atag,t[ls(o)].mx+=t[o].atag,t[ls(o)].mi+=t[o].atag;
t[rs(o)].atag+=t[o].atag,t[rs(o)].sum+=(r-mid)*t[o].atag,t[rs(o)].mx+=t[o].atag,t[rs(o)].mi+=t[o].atag;
t[o].atag=0;
}
}
int build(int l,int r){
int o=++tot;
if(l==r){t[o].sum=t[o].mi=t[o].mx=a[l];return o;}
int mid=l+r>>1;
ls(o)=build(l,mid),rs(o)=build(mid+1,r);
return pushup(o),o;
}
void modify(int o,int l,int r,int x,int y,long long val,int opt){//1 -> set, 2 -> add
if(l==x&&r==y){
if(opt==1)t[o].s=1,t[o].stag=val,t[o].atag=0,t[o].sum=(r-l+1)*val,t[o].mi=t[o].mx=val;
else t[o].atag+=val,t[o].sum+=(r-l+1)*val,t[o].mi+=val,t[o].mx+=val;
return;
}
int mid=l+r>>1;
pushdown(o,l,r);
if(y<=mid)modify(ls(o),l,mid,x,y,val,opt);
else if(x>mid)modify(rs(o),mid+1,r,x,y,val,opt);
else modify(ls(o),l,mid,x,mid,val,opt),modify(rs(o),mid+1,r,mid+1,y,val,opt);
pushup(o);
}
long long query(int o,int l,int r,int x,int y,int opt){// 1 -> sum, 2 -> min, 3 -> max
if(l==x&&r==y){
if(opt==1)return t[o].sum;
else if(opt==2)return t[o].mi;
else return t[o].mx;
}
int mid=l+r>>1;
pushdown(o,l,r);
if(y<=mid)return query(ls(o),l,mid,x,y,opt);
else if(x>mid)return query(rs(o),mid+1,r,x,y,opt);
else{
long long resl=query(ls(o),l,mid,x,mid,opt);
long long resr=query(rs(o),mid+1,r,mid+1,y,opt);
if(opt==1)return resl+resr;
else if(opt==2)return min(resl,resr);
else return max(resl,resr);
}
} int main(){
n=read(),m=read();
for(int i=1;i<=n;i++)a[i]=read();
root=build(1,n);
while(m--){
scanf("%s",op+1);
if(op[1]=='a'){
int l=read(),r=read(),val=read();
modify(root,1,n,l,r,val,2);
}else if(op[2]=='e'){
int l=read(),r=read(),val=read();
modify(root,1,n,l,r,val,1);
}else if(op[2]=='u'){
int l=read(),r=read();
printf("%lld\n",query(root,1,n,l,r,1));
}else if(op[3]=='x'){
int l=read(),r=read();
printf("%lld\n",query(root,1,n,l,r,3));
}else{
int l=read(),r=read();
printf("%lld\n",query(root,1,n,l,r,2));
}
}
return 0;
}

【codevs4927】线段树练习的更多相关文章

  1. codevs4927 线段树练习5

    题目描述 Description 有n个数和5种操作 add a b c:把区间[a,b]内的所有数都增加c set a b c:把区间[a,b]内的所有数都设为c sum a b:查询区间[a,b] ...

  2. 分块试水--CODEVS4927 线段树练习5

    模板 #include<stdio.h> #include<algorithm> #include<string.h> #include<stdlib.h&g ...

  3. CSU 2151 集训难度【多标记线段树】

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2151 Input 第一行三个数n,m,v0 表示有n名萌新和m次调整,初始时全部萌新的集训难度 ...

  4. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  5. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  6. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  7. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  8. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  9. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

随机推荐

  1. 判断浏览器是否支持H5

    window.onload = function() { if (!window.applicationCache) { alert("请升级您的浏览器版本,你的浏览器不支持HTML5!&q ...

  2. mysql的主从复制

    一.主从复制简介 二.主从复制原理 四.主从复制基本故障处理 五.延时从库 六.半同步复制 七.过滤复制 四.主从复制基本故障处理 SQL 线程为NO 一般情况下,因为主库一开始本来就有一些存在的库, ...

  3. liunx 运维知识三部分

    一. 用户级用户组相关 二. 文件属性和链接知识及磁盘已满故障案例 三. 通配符 四. 特殊符号 五. 基础正则 六. 扩展正则 七. sed实践 八. awk实践

  4. web项目中的监听器,过滤器以及自定义servlet的执行顺序

    可以看到web容器一启动就会实例化监听器的contextInitialized(ServletContextEvent event)方法,然后是过滤器的init()方法,最后在用户访问web应用的 时 ...

  5. js 首次进入弹窗

    今天有个需求,首次进入需要弹窗,然后就在网上找了下,虽然看了很多但是说的都不是我想要的,最后终于到了一个合适的. function get_cookie(Name) { var search = Na ...

  6. 关于浏览器兼容问题——还有移动端meta问题

    <!DOCTYPE html><!--[if lt IE 7]> <html dir="ltr" lang="en-US" cla ...

  7. vuex2.0 基本使用(3) --- getter

    有的组件中获取到 store 中的state,  需要对进行加工才能使用,computed 属性中就需要写操作函数,如果有多个组件中都需要进行这个操作,那么在各个组件中都写相同的函数,那就非常麻烦,这 ...

  8. Nginx Epoll事件模型优劣

    L30-31 Epoll 性能优势主要源于它不用遍历 假设有100万个链接 其它事件可能都需要遍历所有链接,而Epoll只要遍历活跃的链接,这样大大提升了效率

  9. node.js 运行机制与简单使用

    一.hello world 1.引入 required 模块 2.创建服务器 3.接收请求与响应请求 var http = require('http'); // 载入http模块 http.crea ...

  10. Codeforces Round #472 Div. 1

    A:某个格子被染黑说明该行和该列同时被选中,使用并查集合并,最后看每个集合中是否有未被染黑的格子即可. #include<iostream> #include<cstdio> ...