[机器学习] --- Getting Started With MachineLearning
一. What’s machine learning
Machine Learning is the science of gettingcomputers to act without being explicitly programmed --- Andrew Ng
Machine learning is a technique of data science that helps computers learn from existing data in order to forecast future behaviors, outcomes, and trends. --- Microsoft
二. The difference between traditional approach and Machine Learning
From business problem to Machine learning problem: a Recipe
Step-by-step “recipe” for qualifying a business problem as a machine learning problem
- Do you need machine learning?
- Can you formulate your problem clearly?
- Do you have sufficient examples?
- Does your problem have a regular pattern?
- Can you find meaningful representations of your data?
- How do you define success?
三. How to create machine learning models
四. The Core --- Data
Data understanding
Data Preparation
Approaches for Feature Selection
五. Modelling
Train the model
六. Model Evaluation
Hold-out validation strategy
k-fold cross validation strategy
leave-one-out cross validation strategy
Because future instances have unknown target values, you need to check the accuracy metric of the ML model on data for which you already know the target answer, and use this assessment as a proxy for predictive accuracy on future data 1.
Evaluate your trained model by using validation/test dataset. You compare the results of your model's predictions to the target values in the evaluation data and use statistical techniques appropriate to your model to gauge your success.
What’s the accuracy
Accuracy measures the ratio of correct predictions to the total number of cases evaluated
Increasing precision reduces recall, and vice versa. This is called the precision/recall tradeoff
- Within any one model, you can decide to emphasize either precision or recall.
- You can influence precision and recall by changing the threshold of the model.
Metrics for evaluating regression model
Summary: Testing and Error Metrics
Tuning the Hyperparameter
Model Deployment
[机器学习] --- Getting Started With MachineLearning的更多相关文章
- Google机器学习课程基于TensorFlow : https://developers.google.cn/machine-learning/crash-course
Google机器学习课程基于TensorFlow : https://developers.google.cn/machine-learning/crash-course https ...
- [Machine-Learning] 机器学习中的几个度量指标
Several classification metrics for ML/DM methods. 主要解释下机器学习(或数据挖掘)中的几个度量指标. 1. 关于 "TN/TP/FN/FP&q ...
- .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍
Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...
- .NET平台机器学习资源汇总,有你想要的么?
接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家.部分用过的 ,会有稍微详细点的说明,其他没用过的, ...
- [Machine Learning] 国外程序员整理的机器学习资源大全
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C ...
- 机器学习&人工智能书籍
Introduction to Machine Learning https://www.amazon.cn/Introduction-to-Machine-Learning-Alpaydin-Eth ...
- 斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感[转]
近日,在网易公开课视频网站上看完了<机器学习>课程视频,现做个学后感,也叫观后感吧. 学习时间 从2013年7月26日星期五开始,在网易公开课视频网站上,观看由斯坦福大学Andrew Ng ...
- [resource]23个python的机器学习包
23个python的机器学习包,从常见的scikit-learn, pylearn2,经典的matlab替代orange, 到最新最酷的Theano(深度学习)和torch 7 (well,其实lua ...
- 对话机器学习大神Yoshua Bengio(下)
对话机器学习大神Yoshua Bengio(下) Yoshua Bengio教授(个人主页)是机器学习大神之一,尤其是在深度学习这个领域.他连同Geoff Hinton老先生以及 Yann LeCun ...
随机推荐
- python语言相关语法基础
numpy系列import numpya = numpy.array([[1,2], [3,4]])b = numpy.array([[5,6], [7,8]])a*b>>>arra ...
- php5.6,Ajax报错,Warning: Cannot modify header information - headers already sent in Unknown on line 0
php5.6ajax报错 Deprecated: Automatically populating $HTTP_RAW_POST_DATA is deprecated and will be remo ...
- gulp使用入门
介绍:Gulp 是基于node.js的一个前端自动化构建工具,可以使用它构建自动化工作流程(前端集成开发环境):不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成,大大 ...
- UML model refactoring: a systematic literature review
一.基本信息 标题:UML model refactoring: a systematic literature review 时间:2015 出版源:Empirical Software Engin ...
- 包建强的培训课程(6):Android App瘦身优化
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- JavaScript中常见的10个BUG及其修复方法
如今网站几乎100%使用JavaScript.JavaScript看上去是一门十分简单的语言,然而事实并不如此.它有很多容易被弄错的细节,一不注意就导致BUG. 1. 错误的对this进行引用 在闭包 ...
- 安装owncloud作为自己的云服务器
环境:centos7,php5.6.37,apache2.4.6 首先,环境都要搭好,与之前搭wordpress网站是一样的.接下来下载程序 wget https://download.ownclou ...
- 吴恩达机器学习笔记8-多变量线性回归(Linear Regression with Multiple Variables)--多维特征
我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(
- Kali学习笔记11:僵尸扫描案例
什么是僵尸扫描?本质也是端口扫描,不过是一种极其隐蔽的扫描方式 所以几乎不会被发现,不过也有着很大缺陷:扫描条件很高 首先需要有一台僵尸机,这里我找好一台win10僵尸机器,IP地址为:10.14.4 ...
- LabVIEW(五):DAQ同步
1.在许多的测试测量应用当中,我们会需要在通过一个时间段内进行同步测量. 同步采集通常分为两类: (1).同时测量:即不同的任务在同一时刻开始.举例来说,我们会在一个模拟输入通道上采集数据,同时在一个 ...