KFCM算法的matlab程序(用FCM初始化聚类中心)

在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与运行时间。

作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/

1.iris数据

iris.data

5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3

2.源程序

Eg_KFCM.m

function [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,K)
%输入K:聚的类,max_iter是最大迭代次数,T:遗传算法最大迭代次数,n:种群个数
%输出ave_acc_KFCM:迭代max_iter次之后的平均准确度,iter:实际KFCM迭代次数
% data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
% data=data_load(:,1:4);
% real_label=data_load(:,5);
t0=cputime;
max_iter=20;
s=0;
accuracy=zeros(max_iter,1);
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
for i=1:max_iter
%随机初始化K个聚类中心
% rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
% para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
[~,para_miu,iter_FCM]=My_FCM2(X,K);
[label_1,iter_KFCM]=My_KFCM(X,K,para_miu);
accuracy(i)=succeed(real_label,K,label_1);
s=s+accuracy(i);
fprintf('第 %2d 次,FCM的迭代次数为:%2d,KFCM的迭代次数为:%2d,准确度为:%.8f\n', i, iter_FCM, iter_KFCM, accuracy(i));
end
ave_acc_KFCM=s/max_iter;
max_acc_FCM=max(accuracy);
min_acc_FCM=min(accuracy);
run_time=cputime-t0;

My_FCM2.m

function [label_1,para_miu_new,iter]=My_FCM2(X,K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
fitness=zeros(T,1);
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if distant(i,j)==1
responsivity(i,j)=0;
elseif distant(i,j)==0
responsivity(i,j)=1./sum(responsivity(i,:)==0);
else
R_up(i,j)=distant(i,j).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(responsivity'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
break;
end
end
end
para_miu_new=para_miu;
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);

My_KFCM.m

function [label_1,iter,fitness_min]=My_KFCM(X,K,para_miu)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
sigma_1=150; %高斯核函数的参数
[X_num,X_dim]=size(X);
fitness=zeros(X_num,1);
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% KFCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%高斯核函数,X_num*K的矩阵
kernel_fun=exp((-distant)./(2*sigma_1*sigma_1));
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if kernel_fun(i,j)==1
responsivity(i,j)=0;
else
R_up(i,j)=(1-kernel_fun(i,j)).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=2*sum(sum((ones(X_num,K)-kernel_fun).*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(kernel_fun.*(responsivity.^(alpha)))'*X; %μ的分子部分
para_miu=miu_up./(sum(kernel_fun.*(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
%if norm(responsivity(t)-responsivity(t-1))<=eps
break;
end
end
end
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
fitness_min=fitness(iter);

succeed.m

function accuracy=succeed(real_label,K,id)
%输入K:聚的类,id:训练后的聚类结果,N*1的矩阵
N=size(id,1); %样本个数
p=perms(1:K); %全排列矩阵
p_col=size(p,1); %全排列的行数
new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col
num=zeros(1,p_col); %与真实聚类结果一样的个数
%将训练结果全排列为N*p_col的矩阵,每一列为一种可能性
for i=1:N
for j=1:p_col
for k=1:K
if id(i)==k
new_label(i,j)=p(j,k); %iris数据库,1 2 3
end
end
end
end
%与真实结果比对,计算精确度
for j=1:p_col
for i=1:N
if new_label(i,j)==real_label(i)
num(j)=num(j)+1;
end
end
end
accuracy=max(num)/N;

3.结果

>>  data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
>> data=data_load(:,1:4);
>> real_label=data_load(:,5);
>> [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,3)
第 1 次,FCM的迭代次数为:24,KFCM的迭代次数为: 7,准确度为:0.88000000
第 2 次,FCM的迭代次数为:29,KFCM的迭代次数为: 6,准确度为:0.90666667
第 3 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 4 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 5 次,FCM的迭代次数为:24,KFCM的迭代次数为: 5,准确度为:0.90666667
第 6 次,FCM的迭代次数为:21,KFCM的迭代次数为: 4,准确度为:0.90000000
第 7 次,FCM的迭代次数为:20,KFCM的迭代次数为: 5,准确度为:0.90666667
第 8 次,FCM的迭代次数为:23,KFCM的迭代次数为: 4,准确度为:0.90000000
第 9 次,FCM的迭代次数为:24,KFCM的迭代次数为: 4,准确度为:0.90000000
第 10 次,FCM的迭代次数为:19,KFCM的迭代次数为: 5,准确度为:0.88666667
第 11 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 12 次,FCM的迭代次数为:30,KFCM的迭代次数为: 5,准确度为:0.89333333
第 13 次,FCM的迭代次数为:30,KFCM的迭代次数为: 7,准确度为:0.88000000
第 14 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 15 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.90666667
第 16 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000
第 17 次,FCM的迭代次数为:14,KFCM的迭代次数为: 7,准确度为:0.88000000
第 18 次,FCM的迭代次数为:16,KFCM的迭代次数为: 7,准确度为:0.88000000
第 19 次,FCM的迭代次数为:22,KFCM的迭代次数为: 6,准确度为:0.90666667
第 20 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000 ave_acc_KFCM = 0.894000000000000 max_acc_FCM = 0.906666666666667 min_acc_FCM = 0.880000000000000 run_time = 2.015625000000000

4.注意

这篇文章介绍KFCM的实现过程,用FCM初始化聚类中心,而不是随机初始化,性能比FCM好一些。如有不对之处,望指正。

KFCM算法的matlab程序(用FCM初始化聚类中心)的更多相关文章

  1. KFCM算法的matlab程序

    KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...

  2. FCM算法的matlab程序2

    FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...

  3. FCM算法的matlab程序

    FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  4. FCM算法的matlab程序(初步)

    FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  5. GMM算法的matlab程序

    GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...

  6. GMM算法的matlab程序(初步)

    GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...

  7. K-means算法的matlab程序

    K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...

  8. K-means算法的matlab程序(初步)

    K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...

  9. ISODATA聚类算法的matlab程序

    ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...

随机推荐

  1. springMVC中的注解@RequestParam与@PathVariable的区别

    1.@PathVariable @PathVariable绑定URI模板变量值 @PathVariable是用来获得请求url中的动态参数的 @PathVariable用于将请求URL中的模板变量映射 ...

  2. SpringBoot学习(四)-->SpringBoot快速入门,开山篇

    Spring Boot简介 Spring Boot的目的在于创建和启动新的基于Spring框架的项目.Spring Boot会选择最适合的Spring子项目和第三方开源库进行整合.大部分Spring ...

  3. 第一册:lesson fifty nine。

    原文: Is that all? A:I want some envelopes ,please? B:Do you want the large size or small size? A:The ...

  4. MyBatis学习总结(四)——MyBatis缓存与代码生成

    一.MyBatis缓存 缓存可以提高系统性能,可以加快访问速度,减轻服务器压力,带来更好的用户体验.缓存用空间换时间,好的缓存是缓存命中率高的且数据量小的.缓存是一种非常重要的技术. 1.0.再次封装 ...

  5. 怎样监听vue.js中v-for全部渲染完成?

    vue里面本身带有两个回调函数: 一个是Vue.nextTick(callback),当数据发生变化,更新后执行回调. 另一个是Vue.$nextTick(callback),当dom发生变化,更新后 ...

  6. [android] 采用layoutInflater打气筒创建一个view对象

    上一节知道了ListView的工作原理,数据也展示出来了,但是TextView显示的非常难看,如果想美化一下,就先创建好一个布局出来,这个布局采用了两层LinearLayout嵌套,外层的水平方向,内 ...

  7. 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)

    题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...

  8. springboot 开发 Tars

    1,创建 springboot 项目,并在启动类添加 @EnableTarsServer 注解 @SpringBootApplication @EnableTarsServer public clas ...

  9. yarn安装ant-报错

    异常现象: 使用react引用antd的库时报错 yarn add antd Trace: Error: connect ETIMEDOUT 114.55.80.225:80 at Object._e ...

  10. git 入门教程之撤销更改

    撤销更改 相信你已经了解了 git 的基本概念,也清楚了工作区,暂存区和版本库的关系,现在让我们用所学的知识继解决实际问题吧! 背景 正常看得见的目录是我们最为熟悉的工作区,在工作中不可能总是100% ...