KFCM算法的matlab程序(用FCM初始化聚类中心)
KFCM算法的matlab程序(用FCM初始化聚类中心)
在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行实现,用FCM初始化聚类中心,并求其准确度与运行时间。
作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/
1.iris数据
iris.data
5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3
2.源程序
Eg_KFCM.m
function [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,K)
%输入K:聚的类,max_iter是最大迭代次数,T:遗传算法最大迭代次数,n:种群个数
%输出ave_acc_KFCM:迭代max_iter次之后的平均准确度,iter:实际KFCM迭代次数
% data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
% data=data_load(:,1:4);
% real_label=data_load(:,5);
t0=cputime;
max_iter=20;
s=0;
accuracy=zeros(max_iter,1);
%对data做最大-最小归一化处理
[data_num,~]=size(data);
X=(data-ones(data_num,1)*min(data))./(ones(data_num,1)*(max(data)-min(data)));
for i=1:max_iter
%随机初始化K个聚类中心
% rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
% para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
[~,para_miu,iter_FCM]=My_FCM2(X,K);
[label_1,iter_KFCM]=My_KFCM(X,K,para_miu);
accuracy(i)=succeed(real_label,K,label_1);
s=s+accuracy(i);
fprintf('第 %2d 次,FCM的迭代次数为:%2d,KFCM的迭代次数为:%2d,准确度为:%.8f\n', i, iter_FCM, iter_KFCM, accuracy(i));
end
ave_acc_KFCM=s/max_iter;
max_acc_FCM=max(accuracy);
min_acc_FCM=min(accuracy);
run_time=cputime-t0;
My_FCM2.m
function [label_1,para_miu_new,iter]=My_FCM2(X,K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
fitness=zeros(T,1);
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
rand_array=randperm(X_num); %产生1~X_num之间整数的随机排列
para_miu=X(rand_array(1:K),:); %随机排列取前K个数,在X矩阵中取这K行作为初始聚类中心
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if distant(i,j)==1
responsivity(i,j)=0;
elseif distant(i,j)==0
responsivity(i,j)=1./sum(responsivity(i,:)==0);
else
R_up(i,j)=distant(i,j).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(responsivity'.^(alpha))*X; %μ的分子部分
para_miu=miu_up./((sum(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
break;
end
end
end
para_miu_new=para_miu;
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
My_KFCM.m
function [label_1,iter,fitness_min]=My_KFCM(X,K,para_miu)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5; %定义迭代终止条件的eps
alpha=2; %模糊加权指数,[1,+无穷)
T=100; %最大迭代次数
sigma_1=150; %高斯核函数的参数
[X_num,X_dim]=size(X);
fitness=zeros(X_num,1);
responsivity=zeros(X_num,K);
R_up=zeros(X_num,K);
% ----------------------------------------------------------------------------------------------------
% KFCM算法
for t=1:T
%欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X',矩阵大小为X_num*K
distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))'-2*X*para_miu';
%高斯核函数,X_num*K的矩阵
kernel_fun=exp((-distant)./(2*sigma_1*sigma_1));
%更新隶属度矩阵X_num*K
for i=1:X_num
for j=1:K
if kernel_fun(i,j)==1
responsivity(i,j)=0;
else
R_up(i,j)=(1-kernel_fun(i,j)).^(-1/(alpha-1)); %隶属度矩阵的分子部分
responsivity(i,j)= R_up(i,j)./sum( R_up(i,:),2);
end
end
end
%目标函数值
fitness(t)=2*sum(sum((ones(X_num,K)-kernel_fun).*(responsivity.^(alpha))));
%更新聚类中心K*X_dim
miu_up=(kernel_fun.*(responsivity.^(alpha)))'*X; %μ的分子部分
para_miu=miu_up./(sum(kernel_fun.*(responsivity.^(alpha)))'*ones(1,X_dim));
if t>1
if abs(fitness(t)-fitness(t-1))<eps
%if norm(responsivity(t)-responsivity(t-1))<=eps
break;
end
end
end
iter=t; %实际迭代次数
[~,label_1]=max(responsivity,[],2);
fitness_min=fitness(iter);
succeed.m
function accuracy=succeed(real_label,K,id)
%输入K:聚的类,id:训练后的聚类结果,N*1的矩阵
N=size(id,1); %样本个数
p=perms(1:K); %全排列矩阵
p_col=size(p,1); %全排列的行数
new_label=zeros(N,p_col); %聚类结果的所有可能取值,N*p_col
num=zeros(1,p_col); %与真实聚类结果一样的个数
%将训练结果全排列为N*p_col的矩阵,每一列为一种可能性
for i=1:N
for j=1:p_col
for k=1:K
if id(i)==k
new_label(i,j)=p(j,k); %iris数据库,1 2 3
end
end
end
end
%与真实结果比对,计算精确度
for j=1:p_col
for i=1:N
if new_label(i,j)==real_label(i)
num(j)=num(j)+1;
end
end
end
accuracy=max(num)/N;
3.结果
>> data_load=dlmread('E:\www.cnblogs.com\kailugaji\database\iris.data');
>> data=data_load(:,1:4);
>> real_label=data_load(:,5);
>> [ave_acc_KFCM,max_acc_FCM,min_acc_FCM,run_time]=Eg_KFCM(data,real_label,3)
第 1 次,FCM的迭代次数为:24,KFCM的迭代次数为: 7,准确度为:0.88000000
第 2 次,FCM的迭代次数为:29,KFCM的迭代次数为: 6,准确度为:0.90666667
第 3 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 4 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 5 次,FCM的迭代次数为:24,KFCM的迭代次数为: 5,准确度为:0.90666667
第 6 次,FCM的迭代次数为:21,KFCM的迭代次数为: 4,准确度为:0.90000000
第 7 次,FCM的迭代次数为:20,KFCM的迭代次数为: 5,准确度为:0.90666667
第 8 次,FCM的迭代次数为:23,KFCM的迭代次数为: 4,准确度为:0.90000000
第 9 次,FCM的迭代次数为:24,KFCM的迭代次数为: 4,准确度为:0.90000000
第 10 次,FCM的迭代次数为:19,KFCM的迭代次数为: 5,准确度为:0.88666667
第 11 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.88666667
第 12 次,FCM的迭代次数为:30,KFCM的迭代次数为: 5,准确度为:0.89333333
第 13 次,FCM的迭代次数为:30,KFCM的迭代次数为: 7,准确度为:0.88000000
第 14 次,FCM的迭代次数为:22,KFCM的迭代次数为: 5,准确度为:0.90666667
第 15 次,FCM的迭代次数为:23,KFCM的迭代次数为: 5,准确度为:0.90666667
第 16 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000
第 17 次,FCM的迭代次数为:14,KFCM的迭代次数为: 7,准确度为:0.88000000
第 18 次,FCM的迭代次数为:16,KFCM的迭代次数为: 7,准确度为:0.88000000
第 19 次,FCM的迭代次数为:22,KFCM的迭代次数为: 6,准确度为:0.90666667
第 20 次,FCM的迭代次数为:25,KFCM的迭代次数为: 7,准确度为:0.88000000
ave_acc_KFCM =
0.894000000000000
max_acc_FCM =
0.906666666666667
min_acc_FCM =
0.880000000000000
run_time =
2.015625000000000
4.注意
这篇文章介绍KFCM的实现过程,用FCM初始化聚类中心,而不是随机初始化,性能比FCM好一些。如有不对之处,望指正。
KFCM算法的matlab程序(用FCM初始化聚类中心)的更多相关文章
- KFCM算法的matlab程序
KFCM算法的matlab程序 在“聚类——KFCM”这篇文章中已经介绍了KFCM算法,现在用matlab程序对iris数据库进行简单的实现,并求其准确度. 作者:凯鲁嘎吉 - 博客园 http:// ...
- FCM算法的matlab程序2
FCM算法的matlab程序2 在“FCM算法的matlab程序”这篇文章中已经用matlab程序对iris数据库进行实现,并求解准确度.下面的程序是另一种方法,是最常用的方法:先初始化聚类中心,在进 ...
- FCM算法的matlab程序
FCM算法的matlab程序 在“FCM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- FCM算法的matlab程序(初步)
FCM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648430.html文章中已经介绍了FCM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- GMM算法的matlab程序
GMM算法的matlab程序 在“GMM算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 - 博客园 h ...
- GMM算法的matlab程序(初步)
GMM算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648508.html文章中已经介绍了GMM算法,现在用matlab程序实现它. 作者:凯鲁嘎 ...
- K-means算法的matlab程序
K-means算法的matlab程序 在“K-means算法的matlab程序(初步)”这篇文章中已经用matlab程序对iris数据库进行简单的实现,下面的程序最终的目的是求准确度. 作者:凯鲁嘎吉 ...
- K-means算法的matlab程序(初步)
K-means算法的matlab程序 在https://www.cnblogs.com/kailugaji/p/9648369.html 文章中已经介绍了K-means算法,现在用matlab程序实现 ...
- ISODATA聚类算法的matlab程序
ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...
随机推荐
- mysql数据表的基本操作
好久没梳理下Mysql基础命令了.今天抽空整理了下,虽然很简单...但是还是有必要巩固下基础滴啦 1.创建表:之前需要use database database_name 然后create table ...
- FastJson序列化Json自定义返回字段,普通类从spring容器中获取bean
前言: 数据库的字段比如:price:1 ,返回需要price:1元. 这时两种途径修改: ① 比如sql中修改或者是在实体类转json前遍历修改. ②返回json,序列化时候修改.用到的是fastj ...
- Java学习笔记之——构造方法
构造方法:方法名和类名相同且没有返回值 1.作用 创建对象 对象初始化 2.普通方法的结构 权限修饰符 返回值类型 方法名(形参){ 方法体: } 3. 构造方法的结构 (1)结构 权限修饰符 方法名 ...
- Mybatis框架可视化(1)
Mybatis整体架构视图: 接 口 层 SqlSession (定义了Mybatis暴露给应用程序调用的API) 核 心 处 理 层 配置解析 (加载核心配置.映射配置. mapper接口注解信息, ...
- Https协议报错:com.sun.net.ssl.internal.www.protocol.https.HttpsURLConnectionOldImpl解决方法
旭日Follow_24 的CSDN 博客 ,全文地址请点击: https://blog.csdn.net/xuri24/article/details/82220333 所用应用服务器:JBoss服务 ...
- GitHub:我们是这样弃用jQuery的
摘要: 技术债清理流程指南. 原文:Removing jQuery from GitHub.com frontend 译文:GitHub:我们为什么会弃用jQuery? 作者:GitHub 前端工程团 ...
- 一个优秀的SEOer必须掌握的三大标配技术
首先,认识网页代码是基础 这里所讲的网页代码是指HTML代码,并不是指复杂的PHP模板技术.一般的培训机构总是提倡学SEO不用学网页代码,只要会购买域名空间搭建网站就行,因为现在的网站模板太丰富了,对 ...
- 大事记 - 安卓微信浏览器 video 标签层级过高
// 为什么叫<大事记>? // 以前总有面试官问这样一个问题:“你在项目中遇到过最头疼的问题是什么,是怎么解决的?” // 当时总觉得,已解决的问题都算不上头疼,所以回答总是不尽人意. ...
- cf1132G. Greedy Subsequences(线段树)
题意 题目链接 Sol 昨天没想到真是有点可惜了. 我们考虑每个点作为最大值的贡献,首先预处理出每个位置\(i\)左边第一个比他大的数\(l\),显然\([l + 1, i]\)内的数的后继要么是\( ...
- spring boot 集成 redis lettuce
一.简介 spring boot框架中已经集成了redis,在1.x.x的版本时默认使用的jedis客户端,现在是2.x.x版本默认使用的lettuce客户端,两种客户端的区别如下 # Jedis和L ...