今天我们利用scrapy框架来抓取Stack Overflow里面最新的问题(),并且将这些问题保存到MongoDb当中,直接提供给客户进行查询。

安装

在进行今天的任务之前我们需要安装二个框架,分别是Scrapy (1.1.0)和pymongo (3.2.2).

scrapy

如果你运行的的系统是osx或者linux,可以直接通过pip进行安装,而windows需要另外安装一些依赖,因为电脑的原因不对此进行讲解。

$ pip install Scrapy

一旦安装完成之后你可以直接在python shell当中输入下面的命令,倘若没有出现错误的话,说明已安装完成

>>> import scrapy
>>>

安装PyMongo和mongodb

因为系统是osx的,所以直接通过下面的语句就可以安装。

brew install mongodb

运行mongodb同样特别的简单,只需要在终端下面输入下面的语法:

mongod --dbpath=.

--dbpath是指定数据库存放的路径,运行之后会在该路径下面生成一些文件

下一步我们就需要安装PyMongo,同样采用pip的方式

$ pip install pymongo

Scrapy 项目

我们来创建一个新的scrapy的项目,在终端输入下面的语法

$ scrapy startproject stack


一旦上面的命令完成之后,scrapy会直接创建相应的文件,这些文件包含了基本的信息,便于你来修改相应的内容。

定义数据

items.py文件用于我们定义需要抓取对象的存储的“容器“
有关StackItem()预定义时并让其继承于scrapy.Item

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html import scrapy class StackItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
pass

这里我们需要在里面添加两个字段,分别用来存放抓取到的标题以及链接


from scrapy.item import Item,Field class StackItem(Item):
# define the fields for your item here like:
title=Field()
url=Field()

创建爬虫

我们需要在spider文件夹下面创建一个stack_spider.py的文件,这个里面包容我们爬虫进行抓取时的行为。就是告诉爬虫我们需要抓取哪些内容以及内容的来源。

from scrapy import Spider
from scrapy.selector import Selector
from stack.items import StackItem class StackSpider(Spider):
name="stack"
allowed_domains=['stackoverflow.com']
start_urls = [
"http://stackoverflow.com/questions?pagesize=50&sort=newest",
]
  • name 是定义爬虫的名称
  • allowed_domains 指定爬虫进行爬取的域地址
  • start_urls 定义爬虫需要抓取的网页的url地址

XPath 选择

scrapy使用XPath来进行匹配相应的数据的来源,html是一种标记的语法,里面定义了很多的标签和属性,比如说我们定义一个下面的这样的一个标签,这里我们就可以通过'//div[@class="content"]'来找到这个标记,找到之后我们可以取出其中的属性或者它的子节点

<div class='content'>

下面我们通过chrome来讲解如果找到xpath的路径 ,在进行操作之前我们需要打开开发者工具,可以点击菜单栏上面的视图->开发者->开发者工具来打进入开发者模式,或者可以根据快捷捷来进行打开。

打开之后我们在需要的内容上面点击右击会弹出一个菜单,这里我们可以选择检查来找到当前的内容在html相应的位置

这里chrome会自动帮助我们找到相应的位置,通过下面的分析,我们知道标题的路径是包含在一个

下面的h3标记当中。

现在我们来更新相应的stack_spider.py脚本

from scrapy import Spider
from scrapy.selector import Selector
from stack.items import StackItem class StackSpider(Spider):
name="stack"
allowed_domains=['stackoverflow.com']
start_urls = [
"http://stackoverflow.com/questions?pagesize=50&sort=newest",
]
def parse(self,response):
questions=Selector(response).xpath('//div[@class="summary"]/h3')

提取数据

创建抓取的规约之后,我们需要与刚才创建的items实体进行关联,我们继续修改stack_spider.py文件

from scrapy import Spider
from scrapy.selector import Selector
from stack.items import StackItem class StackSpider(Spider):
name="stack"
allowed_domains=['stackoverflow.com']
start_urls = [
"http://stackoverflow.com/questions?pagesize=50&sort=newest",
]
def parse(self,response):
questions=Selector(response).xpath('//div[@class="summary"]/h3')
for question in questions:
item=StackItem()
item['title'] = question.xpath(
'a[@class="question-hyperlink"]/text()').extract()[0]
item['url'] = question.xpath(
'a[@class="question-hyperlink"]/@href').extract()[0]
yield item

通过遍历所有的符合//div[@class="summary"]/h3的元素,并且从中找到我们真正需要爬取的元素内容

测试

现在我们进行测试,只要在项目的目录下面运行以下的脚本就可以进行测试 。

scrapy crawl stack

现在我们需要将爬取到的所有的信息保存到一个文件当中,可以在后面添加二个参数-o和-t

scrapy crawl stack -o items.json -t json

下面是实际保存的文件的内容分别包含了title和url

将元素存放入MongoDB

这里我们需要将所有的元素保存到Mongodb collection当中。
在进行操作之前我们需要在setinngs.py指定相应的pipeline和添加一些数据库的参数

ITEM_PIPELINES = {
'stack.pipelines.MongoDBPipeline': 300,
}
MONGODB_SERVER = "localhost"
MONGODB_PORT = 27017
MONGODB_DB = "stackoverflow"
MONGODB_COLLECTION = "questions"

pipeline 管理

在之前的步骤里面我们分别已经完成了对html的解析,以及指定数据的存储。但是这时所有的信息都在内存当中,我们需要将这些爬取到数据存储到数据库当中,这里就轮到pipelines.py上场了,这玩意就负责对数据的存储的。
在上面我们已经定义了数据库的参数,现在我们终于派上用场了。

import pymongo
from scrapy.conf import settings
from scrapy.exceptions import DropItem
from scrapy import log class MongoDBPipeline(object):
def __init__(self):
connection=pymongo.MongoClient(
settings['MONGODB_SERVER'],
settings['MONGODB_PORT']
)
db=connection[settings['MONGODB_DB']]
self.collection=db[settings['MONGODB_COLLECTION']]

上面的代码是我们创建了一个MongoDBPipeline()的类,以及定义初始化函数,用来读取刚才的参数来创建一个Mongo的连接。

数据处理

下一步我们需要定义一个函数来处理解析的数据

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
from scrapy.conf import settings
from scrapy.exceptions import DropItem
from scrapy import log class MongoDBPipeline(object):
def __init__(self):
connection=pymongo.MongoClient(
settings['MONGODB_SERVER'],
settings['MONGODB_PORT']
)
db=connection[settings['MONGODB_DB']]
self.collection=db[settings['MONGODB_COLLECTION']]
def process_item(self,item,spider):
valid=True
for data in item:
if not data:
valid=False
raise DropItem('Missing{0}!'.format(data))
if valid:
self.collection.insert(dict(item))
log.msg('question added to mongodb database!',
level=log.DEBUG,spider=spider)
return item

上面已经完成了对数据的连接,以及相应数据的存储

测试

我们同样在stack目录当中运行下面的命令

$ scrapy crawl stack

当内容执行完成之后没有出现任何的错误的提示,恭喜你已经将数据正确的存入到mongodb当中。
这里我们通过Robomongo来访问数据库的时候发现创建了一个stackoverflow的数据库,下面已经成功创建了一个名为questions的Collections.并且已经存入了相应的数据了。

利用scrapy和MongoDB来开发一个爬虫的更多相关文章

  1. python scrapy 入门,10分钟完成一个爬虫

    在TensorFlow热起来之前,很多人学习python的原因是因为想写爬虫.的确,有着丰富第三方库的python很适合干这种工作. Scrapy是一个易学易用的爬虫框架,尽管因为互联网多变的复杂性仍 ...

  2. 如何利用scrapy新建爬虫项目

    抓取豆瓣top250电影数据,并将数据保存为csv.json和存储到monogo数据库中,目标站点:https://movie.douban.com/top250 一.新建项目 打开cmd命令窗口,输 ...

  3. Python 开发轻量级爬虫08

    Python 开发轻量级爬虫 (imooc总结08--爬虫实例--分析目标) 怎么开发一个爬虫?开发一个爬虫包含哪些步骤呢? 1.确定要抓取得目标,即抓取哪些网站的哪些网页的哪部分数据. 本实例确定抓 ...

  4. 利用scrapy抓取网易新闻并将其存储在mongoDB

    好久没有写爬虫了,写一个scrapy的小爬爬来抓取网易新闻,代码原型是github上的一个爬虫,近期也看了一点mongoDB.顺便小用一下.体验一下NoSQL是什么感觉.言归正传啊.scrapy爬虫主 ...

  5. webmagic的设计机制及原理-如何开发一个Java爬虫

    之前就有网友在博客里留言,觉得webmagic的实现比较有意思,想要借此研究一下爬虫.最近终于集中精力,花了三天时间,终于写完了这篇文章.之前垂直爬虫写了一年多,webmagic框架写了一个多月,这方 ...

  6. python爬虫实战:利用scrapy,短短50行代码下载整站短视频

    近日,有朋友向我求助一件小事儿,他在一个短视频app上看到一个好玩儿的段子,想下载下来,可死活找不到下载的方法.这忙我得帮,少不得就抓包分析了一下这个app,找到了视频的下载链接,帮他解决了这个小问题 ...

  7. Python下用Scrapy和MongoDB构建爬虫系统(1)

    本文由 伯乐在线 - 木羊 翻译,xianhu 校稿.未经许可,禁止转载!英文出处:realpython.com.欢迎加入翻译小组. 这篇文章将根据真实的兼职需求编写一个爬虫,用户想要一个Python ...

  8. webmagic的设计机制及原理-如何开发一个Java爬虫 转

    此文章是webmagic 0.1.0版的设计手册,后续版本的入门及用户手册请看这里:https://github.com/code4craft/webmagic/blob/master/user-ma ...

  9. 【爬虫】利用Scrapy抓取京东商品、豆瓣电影、技术问题

    1.scrapy基本了解 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架.可以应用在包括数据挖掘, 信息处理或存储历史数据等一系列的程序中.其最初是为了页面抓取(更确切来说,网络抓 ...

随机推荐

  1. DOM加载过程中ready和load的区别

    在浏览器地址栏输入URL地址,浏览器开始加载页面时,有以下几个过程 1.浏览器开始解析HTML文档 2. 浏览器遇到HTML文档中的<script>元素以及CSS样式文件,并且没有asyn ...

  2. Sqlite 存储自定义对象

    在iOS中如果想保存自定义对象,要让自定义对象实现NSCoding接口并实现方法-(id)initWithCoder:(NSCoder *)coder和-(void)encodeWithCoder:( ...

  3. iOS存储数据字典到沙盒

    1.创建一个账号数据模型 用来存放从服务器返回的数据,一般返回的是一个字典,里面包含了这个登陆用户的各种信息,这个数据模型就是用来存放这些东西的 创建一个数据模型  YYCAccount 继承 NSO ...

  4. 使用 Json.Net 对Json文本进行 增删改查

    JSON 已经成为当前主流交互格式, 如何在C#中使用 Json.Net 对Json文本进行 增删改查呢?见如下代码 #region Create (从零创建) public static strin ...

  5. [iOS]技巧集锦:UITableView自定义Cell中的控件无法完全对齐Cell的左边界和右边界

    这是个很诡异的问题,由于一些特殊需求,我的TableView的Cell的背景色是透明,其中的控件会有背景色,第一个控件和最后一个控件我都用IB自动设了约束,对齐Cell的左边界和右边界,但是自动约束很 ...

  6. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  7. 【原】pageResponse - 让H5适配移动设备全家(移动端适配)

    上一篇文章<为什么选择iPhone5的分辨率作为H5视觉稿尺寸>最后留下了问题:是否需要视觉设计师设计多套的视觉稿供给前端工程师做页面适配呢?按照自己以前的方法,通常会要求设计师设计2套的 ...

  8. python读取文件夹

    import os def getFiles(rootDir): if os.path.isfile(rootDir): print(rootDir) elif os.path.isdir(rootD ...

  9. ScrollView分栏视图分析

    代码精华部分如下: //1.添加scrollView /* 1). 添加一个scrollView; 2).创建关注.热门.附近三个控制器. 3). 存储它们的名字到数组中,遍历并放到本控制器里. 4) ...

  10. C语言中 指向函数的指针 简介

    引子:在学习CPrimerPlus的第十四章的14.13节中,遇到了如下三行文字,是有关指向函数的指针的,把我搞晕了. char * fump(); //返回指向char的指针的函数 char (* ...