题意:给定两列球,可以从任意一列球的末尾弹出一个球,最后会得到一个序列,设第i种序列可以被a[i]种操作产生,那么会产生a[i]^2的贡献,求贡献和、

Solution:

首先我们观察a[i]^2的含义,发现它是有a[i]种序列两两之间产生1的贡献。

于是我们就有了一个dp的思路,dp[i][j][k][l]表示一种序列为在第一列有i个,另一列有j个,另一种序列在第一列有k个,在第二列有l个。他们产生一样的输出序列的方案数。

转移就枚举一下一个弹什么。

因为i+j=k+l所以我们可以去掉一维,第一位数组也可以滚动,空间复杂度n^2,时间复杂度n^3.

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 503
using namespace std;
const int mod=;
int dp[N][N][N],n,m,now;
char s1[N],s2[N];
inline void mode(int &x){
while(x>=mod)x-=mod;
}
int main(){
scanf("%d%d",&n,&m);
scanf("%s%s",s1+,s2+);
reverse(s1+,s1+n+);reverse(s2+,s2+m+);
dp[][][]=;now=;
for(int i=;i<=n;++i,now^=){
memset(dp[now^],,sizeof(dp[now^]));
for(int j=;j<=m;++j)
for(int k=;k<=n;++k)if(dp[now][j][k]){
int l=i+j-k,num=dp[now][j][k];
if(l<||l>m)continue;
if(s1[i+]==s1[k+])mode(dp[now^][j][k+]+=num);
if(s1[i+]==s2[l+])mode(dp[now^][j][k]+=num);
if(s2[j+]==s1[k+])mode(dp[now][j+][k+]+=num);
if(s2[j+]==s2[l+])mode(dp[now][j+][k]+=num);
}
}
cout<<dp[now][m][n];
return ;
}

NOI2009管道取珠(dp)的更多相关文章

  1. Bzoj 1566: [NOI2009]管道取珠(DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...

  2. BZOJ.1566.[NOI2009]管道取珠(DP 思路)

    BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...

  3. bzoj1566: [NOI2009]管道取珠 DP

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...

  4. [NOI2009]管道取珠 DP + 递推

    ---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...

  5. bzoj1566 [NOI2009]管道取珠——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...

  6. 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)

    1566: [NOI2009]管道取珠 Time Limit: 20 Sec  Memory Limit: 650 MBSubmit: 1659  Solved: 971 Description In ...

  7. NOI2009 管道取珠 神仙DP

    原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...

  8. BZOJ 1566 管道取珠(DP)

    求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...

  9. 【题解】NOI2009管道取珠

    又是艰难想题的一晚,又是做不出来的一题 (:д:) 好想哭啊…… 这题最关键的一点还是提供一种全新的想法.看到平方和这种东西,真的不好dp.然而我一直陷在化式子的泥潭中出不来.平方能够联想到什么?原本 ...

  10. BZOJ1566 [NOI2009]管道取珠 【dp】

    题目 输入格式 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行为一个AB字符串, ...

随机推荐

  1. 【Python3练习题 015】 一球从100米高度自由落下,每次落地后反跳回原高度的一半,再落下。求它在第10次落地时,共经过多少米?第10次反弹多高?

    a = [100]  #每个‘反弹落地’过程经过的路程,第1次只有落地(100米) h = 100  #每个‘反弹落地’过程,反弹的高度,第1次为100米 print('第1次从%s米高落地,走过%s ...

  2. C#设计模式之7:适配器模式

    适配器模式 使用适配器模式的一个重要的点是首先要识别出什么代码(接口)是已经存在的,什么代码(接口)是新的,需要去适配的.适配器的作用是让旧的(现有的)接口能够匹配新的系统(要去适配的). 比如有下面 ...

  3. HDU 3900 Unblock Me

    题目:Unblock Me 链接:Here 题意:一个游戏,看图就基本知道题意了,特殊的是:1. 方块长度为3或2,宽度固定是1.2. 地图大小固定是6*6,从0开始. 3. 出口固定在(6,2).4 ...

  4. Mission Impossible 6

    题目:Mission Impossible 6 题目链接:http://hihocoder.com/problemset/problem/1228 题目大意: 大概就是让我们写一个代码模拟文本编辑器的 ...

  5. fatal: HttpRequestException encountered解决方法

    最近在windows下git push提交就会弹出如下错误: 网上查了一下发现是Github 禁用了TLS v1.0 and v1.1,必须更新Windows的git凭证管理器,才行. https:/ ...

  6. springmvc配置文件

    1 springMVC的配置文件路径问题 https://www.cnblogs.com/ysloong/p/6071450.html

  7. linux apache tomcat 安装和升级

    一,安装tomcat 注意!安装tomcat前需安装配置JDK,安装方式请参照这篇文章: http://www.cnblogs.com/blog4matto/p/5582054.html 1 tomc ...

  8. WPF中自定义MarkupExtension

    在介绍这一篇文章之前,我们首先来回顾一下WPF中的一些基础的概念,首先当然是XAML了,XAML全称是Extensible Application Markup Language (可扩展应用程序标记 ...

  9. python数学第四天【古典概型】

  10. vscode git设置远程仓库码云

    https://www.cnblogs.com/klsw/p/9080041.html