Kmeans:利用Kmeans实现对多个点进行自动分类—Jason niu
import numpy as np def kmeans(X, k, maxIt):
numPoints, numDim = X.shape
dataSet = np.zeros((numPoints, numDim + 1))
dataSet[:, :-1] = X centroids = dataSet[np.random.randint(numPoints, size = k), :] centroids[:, -1] = range(1, k +1)
iterations = 0
oldCentroids = None while not shouldStop(oldCentroids, centroids, iterations, maxIt):
print ("iteration: \n", iterations)
print ("dataSet: \n", dataSet)
print ("centroids: \n", centroids) oldCentroids = np.copy(centroids)
iterations += 1 updateLabels(dataSet, centroids) centroids = getCentroids(dataSet, k)
return dataSet def shouldStop(oldCentroids, centroids, iterations, maxIt):
if iterations > maxIt:
return True
return np.array_equal(oldCentroids, centroids)
def updateLabels(dataSet, centroids): numPoints, numDim = dataSet.shape
for i in range(0, numPoints):
dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids) def getLabelFromClosestCentroid(dataSetRow, centroids):
label = centroids[0, -1];
minDist = np.linalg.norm(dataSetRow - centroids[0, :-1])
for i in range(1 , centroids.shape[0]):
dist = np.linalg.norm(dataSetRow - centroids[i, :-1])
if dist < minDist:
minDist = dist
label = centroids[i, -1]
print ("minDist:", minDist)
return label def getCentroids(dataSet, k):
result = np.zeros((k, dataSet.shape[1]))
for i in range(1, k + 1):
oneCluster = dataSet[dataSet[:, -1] == i, :-1] )
result[i - 1, :-1] = np.mean(oneCluster, axis = 0)
result[i - 1, -1] = i return result
x1 = np.array([1, 1])
x2 = np.array([2, 1])
x3 = np.array([4, 3])
x4 = np.array([5, 4])
testX = np.vstack((x1, x2, x3, x4))
result = kmeans(testX, 2, 10)
print ("final result:")
print (result)
Kmeans:利用Kmeans实现对多个点进行自动分类—Jason niu的更多相关文章
- 利用KMeans聚类进行航空公司客户价值分析
准确的客户分类的结果是企业优化营销资源的重要依据,本文利用了航空公司的部分数据,利用Kmeans聚类方法,对航空公司的客户进行了分类,来识别出不同的客户群体,从来发现有用的客户,从而对不同价值的客户类 ...
- K-Means ++ 和 kmeans 区别
Kmeans算法的缺陷 聚类中心的个数K 需要事先给定,但在实际中这个 K 值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适Kmeans需要人为地确定初始聚类中心 ...
- 4. K-Means和K-Means++实现
1. K-Means原理解析 2. K-Means的优化 3. sklearn的K-Means的使用 4. K-Means和K-Means++实现 1. 前言 前面3篇K-Means的博文从原理.优化 ...
- Spark2.0机器学习系列之9: 聚类(k-means,Bisecting k-means,Streaming k-means)
在Spark2.0版本中(不是基于RDD API的MLlib),共有四种聚类方法: (1)K-means (2)Latent Dirichlet allocation (LDA) ...
- kmeans与kmeans++的python实现
一.kmeans聚类: 基本方法流程 1.首先随机初始化k个中心点 2.将每个实例分配到与其最近的中心点,开成k个类 3.更新中心点,计算每个类的平均中心点 4.直到中心点不再变化或变化不大或达到迭代 ...
- PLS:利用PLS(两个主成分的贡献率就可达100%)提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...
- PCA:利用PCA(四个主成分的贡献率就才达100%)降维提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50 ...
- SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu
%SA:利用SA算法解决TSP(数据是14个虚拟城市的横纵坐标)问题——Jason niu X = [16.4700 96.1000 16.4700 94.4400 20.0900 92.5400 2 ...
- ACA:利用ACA解决TSP优化最佳路径问题——Jason niu
load citys_data.mat n = size(citys,1); D = zeros(n,n); for i = 1:n for j = 1:n if i ~= j D(i,j) = sq ...
随机推荐
- PID控制器开发笔记之九:基于前馈补偿的PID控制器的实现
对于一般的时滞系统来说,设定值的变动会产生较大的滞后才能反映在被控变量上,从而产生合理的调节.而前馈控制系统是根据扰动或给定值的变化按补偿原理来工作的控制系统,其特点是当扰动产生后,被控变量还未变化以 ...
- SpringMvc + Jsp+ 富文本 kindeditor 进行 图片ftp上传nginx服务器 实现
一:html 原生态的附件上传 二:实现逻辑分析: 1.1.1 需求分析 Common.js 1.绑定事件 2.初始化参数 3.上传图片的url: /pic/upload 4.上图片参数名称: upl ...
- Confluence 6 修改特定的空间标识图片
空间管理员可以为他们管理的空间修改空间标识图片.这个修改将会覆盖默认的空间标识图片,任何对默认空间图标表示的修改将不会对已经修改的空间标识图片产生影响.请查看上面的例子中的 'Sample Space ...
- RemoveDuplicatesfromSortedList
给定一个排序链表,删除所有重复的元素,使得每个元素只出现一次. 示例 1: 输入: 1->1->2 输出: 1->2 示例 2: 输入: 1->1->2->3-&g ...
- Android源码分析二 硬件抽象层(HAL)
一 什么是HAL HAL 可定义一个标准接口以供硬件供应商实现,这可让 Android 忽略较低级别的驱动程序实现.借助 HAL,您可以顺利实现相关功能,而不会影响或更改更高级别的系统.HAL 实现会 ...
- 如何编辑PDF文件,怎么使用PDF裁剪页面工具
在编辑PDF文件的时候,往往会有很多的小技巧可以使用,在编辑PDF文件的时候,怎么对文件的页面进行裁剪呢,不会的话,看看下面的文章吧,小编已经为大家整理好了哦. 1.打开运行PDF编辑器,在编辑器中打 ...
- Linux 编程笔记(四)
一.用户和用户组管理 添加新的用户账户使用useradd 格式useradd 选项 用户名 1.创建一个用户tian 其中 -d -m参数用来为登陆,登录名产生一个主目录 /usr/tian(其 ...
- 在线版区间众数 hzw的代码。。
/* 查询区间众数,要求强制在线 设有T个块 1.众数只可能在大块[L,R]里或者两端[l,L) (R,r]里出现 2.大块的众数只要预处理打表一下即可,复杂度n*T(这样的区间有T*T个) 3.两端 ...
- jenkins原理
原理:Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. 直白的说:这个jenkins是CI ...
- 数据库和linux对大小写的区分