<题目链接>

题目大意:

有N个城市,这些城市之间有M条有向边,每条边有权值,能够选择K条边 边权置为0,求1到N的最短距离。

解题分析:

分层图最短路模板题,将该图看成 K+1 层图,然后具体解析见代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define INF 0x7ffffffffff;
;
;
typedef long long ll;

int n,m,k,tot,cnt;
int head[M];
];
struct EDGE{
    int to;
    int next;
    ll val;
}edge[M<<];
struct NODE{
    int loc,cal;  //loc代表该点的标号,cal代表该点所在的层数,这两个变量可以确定分层图中所有点的位置
    ll dist;
    bool operator <(const NODE &tmp)const{
        return dist>tmp.dist;
    }
    NODE(,,ll w=){
        loc=a,cal=b,dist=w;
    }
}d[N][];
void init(){
    cnt=;
    memset(head,-,sizeof(head));
}
void add(int u,int v,int w){
    edge[++cnt].to=v,edge[cnt].val=w;
    edge[cnt].next=head[u],head[u]=cnt;
}
void dij(){
    memset(vis,false,sizeof(vis));
    ;i<=n;i++){
        ;j<=k;j++){
            d[i][j].dist=INF;        //将所有点到起点的距离初始化为无穷大
        }
    }
    d[][].dist=;
    priority_queue<NODE>q;
    q.push(NODE(,,d[][].dist));
    while(!q.empty()){
        NODE now=q.top();
        q.pop();
        int tmp1=now.loc,tmp2=now.cal;
        if(vis[tmp1][tmp2])continue;
        vis[tmp1][tmp2]=true;
        for(int i=head[tmp1];~i;i=edge[i].next){
            int v=edge[i].to;
            ll cost=edge[i].val;
            if(d[v][tmp2].dist>d[tmp1][tmp2].dist+cost){     //在同一层中进行普通的松弛操作,表示当前道路的权值不用置为0
                d[v][tmp2].dist=d[tmp1][tmp2].dist+cost;
                q.push(NODE(v,tmp2,d[v][tmp2].dist));
            }
            <=k&&d[v][tmp2+].dist>d[tmp1][tmp2].dist){  //没有加上cost,代表 tmp1-->v 这段路的权值置为0
                d[v][tmp2+].dist=d[tmp1][tmp2].dist;
                q.push(NODE(v,tmp2+,d[v][tmp2+].dist));
            }
        }
    }
}
int main(){
    int T;scanf("%d",&T);
    while(T--){
        init();
        scanf("%d%d%d",&n,&m,&k);
        ;i<=m;i++){
            int u,v;ll w;
            scanf("%d%d%lld",&u,&v,&w);
            add(u,v,w);
        }
        dij();
        ll mn=INF;
        ;i<=k;i++){          //在所有层中选取最短的情况
            mn=min(mn,d[n][i].dist);
        }
        printf("%lld\n",mn);
    }
    ;
}

2018-09-12

ACM-ICPC 2018 南京赛区网络预赛 L 【分层图最短路】的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze

    262144K   There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v ...

  2. ACM-ICPC 2018 南京赛区网络预赛 L题(分层最短路)

    题目链接:https://nanti.jisuanke.com/t/31001 题目大意:给出一个含有n个点m条边的带权有向图,求1号顶点到n号顶点的最短路,可以使<=k条任意边的权值变为0. ...

  3. ACM-ICPC 2018 南京赛区网络预赛 L题(分层图,堆优化)

    题目链接: https://nanti.jisuanke.com/t/31001 超时代码: #include<bits/stdc++.h> using namespace std; # ...

  4. ACM-ICPC 2018 南京赛区网络预赛 L.Magical Girl Haze(分层最短路)

    There are N cities in the country, and M directional roads from u to v(1≤u,v≤n). Every road has a di ...

  5. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze 最短路+分层图

    类似题解 There are NN cities in the country, and MM directional roads from uu to v(1\le u, v\le n)v(1≤u, ...

  6. ACM-ICPC 2018 南京赛区网络预赛 - L Magical Girl Haze (分层迪杰斯特拉)

    题意:N个点,M条带权有向边,求可以免费K条边权值的情况下,从点1到点N的最短路. 分析:K<=10,用dist[i][j]表示从源点出发到点i,免费j条边的最小花费.在迪杰斯特拉的dfs过程中 ...

  7. ACM-ICPC 2018 南京赛区网络预赛 L && BZOJ 2763 分层最短路

    https://nanti.jisuanke.com/t/31001 题意 可以把k条边的权值变为0,求s到t的最短路 解析  分层最短路  我们建立k+1层图 层与层之间边权为0,i 向 i+1层转 ...

  8. 【ACM-ICPC 2018 南京赛区网络预赛 L】Magical Girl Haze

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 定义dis[i][j]表示到达i这个点. 用掉了j次去除边的机会的最短路. dis[1][0]= 0; 在写松弛条件的时候. 如果用 ...

  9. ACM-ICPC 2018 南京赛区网络预赛 L. Magical Girl Haze (分层dijkstra)

    There are NN cities in the country, and MMdirectional roads from uu to v(1\le u, v\le n)v(1≤u,v≤n). ...

随机推荐

  1. PID控制器开发笔记之九:基于前馈补偿的PID控制器的实现

    对于一般的时滞系统来说,设定值的变动会产生较大的滞后才能反映在被控变量上,从而产生合理的调节.而前馈控制系统是根据扰动或给定值的变化按补偿原理来工作的控制系统,其特点是当扰动产生后,被控变量还未变化以 ...

  2. 机器学习之线性回归---logistic回归---softmax回归

    在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题 ...

  3. Oracle 数据库导入与出

    Oracle 数据库导入与出 导出( EXPORT )是用 EXP 将数据库部分或全对象的结构和导出 . 导入( 导入( IMPORT )是用 )是用 IMP IMP将 OS 文件中的对象结构和数据装 ...

  4. vuejs中使用echarts

    <style scoped> .content { /*自行添加样式即可*/ } #main { /*需要制定具体高度,以px为单位*/ height: 400px; } </sty ...

  5. Saruman's Army(POJ3069)

    Description Saruman the White must lead his army along a straight path from Isengard to Helm’s Deep. ...

  6. linux安装siege

    siege安装笔记 本文介绍centos和ubuntu安装方法 centos安装 下载: [root@ siege-4.0.4]# wget http://download.joedog.org/si ...

  7. re模块(正则)

    一, 什么是正则? 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法. 在python中,正则内嵌在python中,并通过re模块实现,正则表达模式被编译成一系列 ...

  8. 一脸懵逼学习hadoop之HDFS的java客户端编写

    1:eclipse创建一个项目,然后导入对应的jar包: 鼠标右击项目,点击properties或者alt+enter快捷键--->java build path--->libraries ...

  9. Visual Studio 2015 插件开发入门

    (1)安装 Visual Studio 2015 的时候选择 Visual Studio 扩展性工具(Visual Studio Extensibility Tools).对于已经安装好 Visual ...

  10. Linux查找当前目录5天的文件并打包

    find . -name "*.sh" -mtime -5 |xargs tar zcvf /tmp/log.tar.gz 解释: *.sh是查找以.sh结尾的文件,也可以是其他如 ...