1570: Sequence Number

时间限制: 1 Sec  内存限制: 1280 MB

题目描述

In Linear algebra, we have learned the definition of inversion number:

Assuming A is a ordered set with n numbers ( n > 1 ) which are different from each other. If exist positive integers i , j, ( 1 ≤ i < j ≤ n and A[i] > A[j]), <A[i], A[j]> is regarded as one of A’s inversions. The number of inversions is regarded as inversion number. Such as, inversions of array <2,3,8,6,1> are <2,1>, <3,1>, <8,1>, <8,6>, <6,1>,and the inversion number is 5.

Similarly, we define a new notion —— sequence number, If exist positive integers i, j, ( 1 ≤ i ≤ j ≤ n and A[i]  <=  A[j], <A[i], A[j]> is regarded as one of A’s sequence pair. The number of sequence pairs is regarded as sequence number. Define j – i as the length of the sequence pair.

Now, we wonder that the largest length S of all sequence pairs for a given array A.

输入

There are multiply test cases.

In each case, the first line is a number N(1<=N<=50000 ), indicates the size of the array, the 2th ~n+1th line are one number per line, indicates the element Ai (1<=Ai<=10^9) of the array.

输出

Output the answer S in one line for each case.

样例输入

5
2 3 8 6 1

样例输出

3

解题思路

求出当A[i]<=A[j],i<=j时,j-i的最大长度。

#include <stdio.h>
#include <algorithm>
using namespace std;
int a[50010];
int main ()
{
    int n, i, j, k, maxn;
    while (~scanf("%d",&n))
    {
        for (i = 0; i < n; i++)
            scanf("%d", &a[i]);
        for (i = n - 1; i >= 0 && a[i] < a[0]; i--);
        maxn = i;
        for (j = 1; j < n - maxn; j++)
        {
            for (k = n - 1; k >= j + maxn; k--)
            {
                if (a[j] <= a[k])
                {
                    maxn = max(maxn, k - j);
                    break;
                }
            }
        }
        printf("%d\n", maxn);
    }
    return 0;
}

Sequence Number的更多相关文章

  1. mysql oom之后的page 447 log sequence number 292344272 is in the future

    mysql oom之后,重启时发生130517 16:00:10 InnoDB: Error: page 447 log sequence number 292344272InnoDB: is in ...

  2. [crypto][ipsec] 简述ESP协议的sequence number机制

    预备 首先提及一个概念叫重放攻击,对应的机制叫做:anti-replay https://en.wikipedia.org/wiki/Anti-replay IPsec协议的anti-replay特性 ...

  3. 理解TCP序列号(Sequence Number)和确认号(Acknowledgment Number)

    原文见:http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/ from:ht ...

  4. InnoDB: The log sequence number in ibdata files does not match

    InnoDB: The log sequence number in ibdata files does not matchInnoDB的:在ibdata文件的日志序列号不匹配 可能ibdata文件损 ...

  5. hzau 1205 Sequence Number(二分)

    G. Sequence Number In Linear algebra, we have learned the definition of inversion number: Assuming A ...

  6. Thread <number> cannot allocate new log, sequence <number>浅析

    有时候,你会在ORACLE数据库的告警日志中发现"Thread <number> cannot allocate new log, sequence <number> ...

  7. ORA-02287: sequence number not allowed here问题的解决

    当插入值需要从另外一张表中检索得到的时候,如下语法的sql语句已经不能完成该功能:insert into my_table(id, name) values ((select seq_my_table ...

  8. [转] 理解TCP序列号(Sequence Number)和确认号(Acknowledgment Number)

    点击阅读原译文 原文见:http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/ ...

  9. pymysql.err.InternalError: Packet sequence number wrong - got 45 expected 0

    原因: 使用了多线程,多线程共享了同一个数据库连接,但每个execute前没有加上互斥锁 方法: 方法一:每个execute前加上互斥锁 lock.acquire()         cursor.e ...

随机推荐

  1. java.lang.IllegalStateException: Ambiguous mapping found

    原因:Controller 出现相同的url映射 参考: https://blog.csdn.net/u010892841/article/details/52136256

  2. D - Stone Division HackerRank - stone-division (博弈+搜索)

    题目链接:https://cn.vjudge.net/problem/HackerRank-stone-division 题目大意:给你n,m,然后是m个数.每一次你可以选择一个a[i],如果能被n整 ...

  3. shell编程 之 文件包含

    解释:就是在一个脚本中引用或者运行其他脚本的文件. 常用格式:. filename 或者 source filename 实例:/hehe文件夹下有两个文件:t2.sh 和t3.sh t2.sh的内容 ...

  4. 20165237 学习基础和C语言基础调查

    学习基础和C语言基础调查 一.技能学习与特长 你有什么技能比大多人(超过90%以上)更好? 我的爱好和技能说实话挺广泛的.如果要挑出来一个很擅长的话,我觉得应该是钢琴. 针对这个技能的获取你有什么成功 ...

  5. Nginx系列6:对称加密与非对称加密各自的应用场景

    强推:推荐一篇通俗易懂的对称加密和非对称加密的文章:https://segmentfault.com/a/1190000004461428 推荐一篇文章:对称加密算法与非对称加密算法的优缺点:http ...

  6. python基础-----异常问题

    ---恢复内容开始--- 当发生python不知所措的错误时,python会创建一个异常对象, 如果你编写处理该异常的代码,程序将会继续运行: 如果你未对异常做任何处理,程序将会停止,并显示一个tra ...

  7. [转] Implementing a CNN for Text Classification in TensorFlow

    Github上的一个开源项目,文档讲得极清晰 Github - https://github.com/dennybritz/cnn-text-classification-tf 原文- http:// ...

  8. [BugBounty] Sleeping stored Google XSS Awakens a $5000 Bounty

    来源:https://blog.it-securityguard.com/bugbounty-sleeping-stored-google-xss-awakens-a-5000-bounty/ 理解 ...

  9. 【leetcode】657. Robot Return to Origin

    Algorithm [leetcode]657. Robot Return to Origin https://leetcode.com/problems/robot-return-to-origin ...

  10. 1、git基础介绍及远程/本地仓库、分支

    1. Git基础介绍 基于Git进行开发时,首先需要将远程仓库代码clone到本地,即为本地仓库.后续大部分时间都是基于本地仓库上的分支进行编码,最后将本地仓库的代码合入远程仓库. 1.1. 远程仓库 ...