1570: Sequence Number

时间限制: 1 Sec  内存限制: 1280 MB

题目描述

In Linear algebra, we have learned the definition of inversion number:

Assuming A is a ordered set with n numbers ( n > 1 ) which are different from each other. If exist positive integers i , j, ( 1 ≤ i < j ≤ n and A[i] > A[j]), <A[i], A[j]> is regarded as one of A’s inversions. The number of inversions is regarded as inversion number. Such as, inversions of array <2,3,8,6,1> are <2,1>, <3,1>, <8,1>, <8,6>, <6,1>,and the inversion number is 5.

Similarly, we define a new notion —— sequence number, If exist positive integers i, j, ( 1 ≤ i ≤ j ≤ n and A[i]  <=  A[j], <A[i], A[j]> is regarded as one of A’s sequence pair. The number of sequence pairs is regarded as sequence number. Define j – i as the length of the sequence pair.

Now, we wonder that the largest length S of all sequence pairs for a given array A.

输入

There are multiply test cases.

In each case, the first line is a number N(1<=N<=50000 ), indicates the size of the array, the 2th ~n+1th line are one number per line, indicates the element Ai (1<=Ai<=10^9) of the array.

输出

Output the answer S in one line for each case.

样例输入

5
2 3 8 6 1

样例输出

3

解题思路

求出当A[i]<=A[j],i<=j时,j-i的最大长度。

#include <stdio.h>
#include <algorithm>
using namespace std;
int a[50010];
int main ()
{
    int n, i, j, k, maxn;
    while (~scanf("%d",&n))
    {
        for (i = 0; i < n; i++)
            scanf("%d", &a[i]);
        for (i = n - 1; i >= 0 && a[i] < a[0]; i--);
        maxn = i;
        for (j = 1; j < n - maxn; j++)
        {
            for (k = n - 1; k >= j + maxn; k--)
            {
                if (a[j] <= a[k])
                {
                    maxn = max(maxn, k - j);
                    break;
                }
            }
        }
        printf("%d\n", maxn);
    }
    return 0;
}

Sequence Number的更多相关文章

  1. mysql oom之后的page 447 log sequence number 292344272 is in the future

    mysql oom之后,重启时发生130517 16:00:10 InnoDB: Error: page 447 log sequence number 292344272InnoDB: is in ...

  2. [crypto][ipsec] 简述ESP协议的sequence number机制

    预备 首先提及一个概念叫重放攻击,对应的机制叫做:anti-replay https://en.wikipedia.org/wiki/Anti-replay IPsec协议的anti-replay特性 ...

  3. 理解TCP序列号(Sequence Number)和确认号(Acknowledgment Number)

    原文见:http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/ from:ht ...

  4. InnoDB: The log sequence number in ibdata files does not match

    InnoDB: The log sequence number in ibdata files does not matchInnoDB的:在ibdata文件的日志序列号不匹配 可能ibdata文件损 ...

  5. hzau 1205 Sequence Number(二分)

    G. Sequence Number In Linear algebra, we have learned the definition of inversion number: Assuming A ...

  6. Thread <number> cannot allocate new log, sequence <number>浅析

    有时候,你会在ORACLE数据库的告警日志中发现"Thread <number> cannot allocate new log, sequence <number> ...

  7. ORA-02287: sequence number not allowed here问题的解决

    当插入值需要从另外一张表中检索得到的时候,如下语法的sql语句已经不能完成该功能:insert into my_table(id, name) values ((select seq_my_table ...

  8. [转] 理解TCP序列号(Sequence Number)和确认号(Acknowledgment Number)

    点击阅读原译文 原文见:http://packetlife.net/blog/2010/jun/7/understanding-tcp-sequence-acknowledgment-numbers/ ...

  9. pymysql.err.InternalError: Packet sequence number wrong - got 45 expected 0

    原因: 使用了多线程,多线程共享了同一个数据库连接,但每个execute前没有加上互斥锁 方法: 方法一:每个execute前加上互斥锁 lock.acquire()         cursor.e ...

随机推荐

  1. 【报错】java.lang.ClassNotFoundException: org.apache.ibatis.session.SqlSession

    报错 java.lang.ClassNotFoundException: org.apache.ibatis.session.SqlSession 或者 java.lang.ClassNotFound ...

  2. CSL 的字符串(单调栈)

    题目链接:https://ac.nowcoder.com/acm/contest/551/D 题目大意: 题目描述 CSL 以前不会字符串算法,经过一年的训练,他还是不会……于是他打算向你求助. 给定 ...

  3. MGR架构~ 整体性能架构的调优

    一 简介:MGR集群架构的调优二 过程:本文将从各个角度来具体阐述下三 硬件    1 硬件选择相同配置的服务器,磁盘,内存,cpu性能越高越好四 网络    1 0丢包和最好万兆网卡五 MGR本身  ...

  4. 【逆向笔记】2017年全国大学生信息安全竞赛 Reverse 填数游戏

    2017年全国大学生信息安全竞赛 Reverse 填数游戏 起因是吾爱破解大手发的解题思路,觉得题挺有意思的,就找来学习学习 这是i春秋的下载链接 http://static2.ichunqiu.co ...

  5. QR 编码原理(三)

    一.日本汉字(KANJI)是两个字节表示的字符码,编码的方式是将其转换为13字节的二进制码制. 转换步骤为: 1.对于JIS值为8140(hex) 到9FFC(hex)之间字符: a)将待转换的JIS ...

  6. Focal Loss

    为了有效地同时解决样本类别不均衡和苦难样本的问题,何凯明和RGB以二分类交叉熵为例提出了一种新的Loss----Focal loss 原始的二分类交叉熵形式如下: Focal Loss形式如下: 上式 ...

  7. MySQL:Your password has expired. To log in you must change it using a client that supports expired passwords

    MySQL:V5.6.37 安装后发现没远程权限,为了方便,就直接把hostname@root修改为%@root,密码修改为和localhost@root一样 然后尴尬的事情发生了,本地登陆正常,远程 ...

  8. c#基础之异常处理

    在开发过程中,经常遇到各种各样的小问题,很多是由于基础不牢固,没有经常总结导致的.遇到重复的问题可能可根据以往经验处理,但是对问题本身引发的原因进行深入的了解.工作很多年,但是c#基础像一层冰一样,可 ...

  9. hibernate框架学习之持久化对象OID

    持久化对象唯一标识——OID 1)数据库中使用主键可以区分两个对象是否相同2)Java语言中使用对象的内存地址区分对象是否相同3)Hibernate中使用OID区分对象是否相同Hibernate认为每 ...

  10. 027_nginx常见优化参数

    一.nginx.conf主配置文件 proxy_ignore_client_abort on; #不允许代理端主动关闭连接