数据探索

一、实验说明

1. 环境登录

无需密码自动登录,系统用户名shiyanlou,密码shiyanlou

2. 环境介绍

本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序:

1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令
2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)
3. R:在命令行输入‘R’  进入R语言的交互式环境,下面的代码都是在交互式环境运行。

3. 环境使用

使用R语言交互式环境输入实验所需的代码及文件,使用LX终端(LXTerminal)运行所需命令进行操作。

完成实验后可以点击桌面上方的“实验截图”保存并分享实验结果到微博,向好友展示自己的学习进度。实验楼提供后台系统截图,可以真实有效证明您已经完成了实验。

实验记录页面可以在“我的主页”中查看,其中含有每次实验的截图及笔记,以及每次实验的有效学习时间(指的是在实验桌面内操作的时间,如果没有操作,系统会记录为发呆时间)。这些都是您学习的真实性证明。

二、课程介绍

这一节课主要介绍使用R语言初步分析数据。首先查看数据的维度、结构以及R数据对象,其次是基本的统计量和图表。接下来是多元数据的分析包括多变量分布、多变量箱型图以及散点图。在后面的例子中将会绘制水平图、热图和3D图,并将图表保存为各种形式的文件。

三、课程内容

1、观察数据

这一章我们将会用到‘iris’数据集,这个数据集属于R中自带的数据,因此不需要额外的加载。首先,查看数据的维度和结构,使用函数dim()和names()可以分别得到数据的维度和数据的列表名称也就是变量名称。使用函数str()和函数attribute()可以查看数据的结构和属性。

> dim(iris) # 维度
> names(iris) # 列名
> str(iris) # 结构
> attribute(iris) # 属性

接下来,查看数据的前5行,使用head()查看数据的前面几行,使用tail()可以查看数据的后面几行。

> iris[1:5,] # 查看1-5行数据
> head(iris) # 查看前6行数据
> tail(iris) # 查看后6行数据

其次,我们可以通过单独的列名称检索数据,下面的代码都可以实现检索‘Sepal.Length’(萼片长度)这个属性的前面10个数据。

> iris[1:10,'Sepal.Length']
> iris$Sepal.Length[1:10] # 一般比较常用的检索方式

结果如下图所示:

2、分析单变量的分布

每一个数值变量的分布都可以使用函数summary()查看,该函数可以得出变量的最小值、最大值、均值、中位数、第一和第三四分位数。

> summary(iris)

结果显示如下:

同样,均值、中位数以及范围可以通过函数mean()、median()以及range()分别实现,下面是通过quantile()函数实现四分位数和百分位数的代码:

> quantile(iris$Sepal.Length)
# 实现10%和30%以及65%的分位数
> quantile(iris$Sepal.Length,c(.1,.3,.65))

接下来,使用var()查看‘Sepal.Length’的方差,并使用函数hist()和density()查看该属性的直方图分布和密度分布。

> var(iris$Sepal.Length) # 方差
> hist(iris$Sepal.Length) # 直方图
> plot(density(iris$Sepal.Length)) # 密度分布图

变量的频数可以通过函数table()查看,使用pie()画饼状图或使用barplot()画条形图。

> table(iris$Species)
> pie(table(iris$Species))
> barplot(table(iris$Species))

条状图如下图所示:

3、分析多元数据

在观察完单独变量的分布之后,我们需要研究两个变量之间的关系。下面我们将会使用函数cov()和cor()计算变量之间的协方差和相关系数。

> cov(iris$Sepal.Length, iris$Petal.Length)
# 计算1-4列属性之间的协方差
> cov(iris[,1:4])
# 计算萼片长度和花瓣长度之间的相关系数
> cor(iris$Sepal.Length, iris$Petal.Length)
> cor(iris[,1:4]) # 计算4个属性之间的相关系数

使用aggregate()返回每种鸢尾花的萼片长度的状态。

# summary这个参数表明使用的是summary()函数查看数据分布状态
> aggregate(Sepal.Length ~ Species, summary, data=iris)

结果显示如下:

使用函数boxplot()绘制箱线图也称箱须图来展示中位数、四分位数以及异常值的分布情况。

> boxplot(Sepal.Length~Species, data=iris)

如下图所示:

上图中,矩形盒中间的横条就是变量的中位数,矩形盒的上下两个边分别是上、下四分位数也称第一四分位数和第三四分位数,最外面的上下两条横线分别是最大值和最小值,至于在virginica这类鸢尾花上面的箱线图外面的一个圆圈就是异常值。

使用plot()函数可以绘制两个数值变量之间的散点图,如果使用with()函数就不需要在变量名之前添加‘iris$’,下面的代码中设置了每种鸢尾花观测值的点的颜色和形状(了解函数或者模块的用法可以通过输入‘?function’查看函数文档):

# 参数col根据鸢尾花种类设置点的颜色,pch将种类转化为数值型设置点的形状
> with(iris, plot(Sepal.Length, Sepal.Width, col=Species, pch=as.numeric(Species)))

效果图如下:

当点比较多的时候就会有重叠,我们可以在绘图前使用jitter()往数据中添加一些噪声点来减少数据的重叠:

> plot(jitter(iris$Sepal.Length), jitter(iris$Sepal.Width))

通过函数pair()绘制散点图矩阵。

> pairs(iris) 

4、拓展

这一节将会学习一些有趣的图,包括3D图热图和平行坐标图

> library(scatterplot3d) # 加载包
> scatterplot3d(iris$Petal.Width, iris$Sepal.Length, iris$Sepal.Width) # 3d图
# dist()函数用来计算不同鸢尾花数据的相似度
> distMatrix <- as.matrix(dist(iris[,1:4]))
> heatmap(distMatrix)
# 绘制平行坐标图
> library(MASS)
> parcoord(iris[1:4], col=iris$Species)
> library(lattice)
> parallelplot(~iris[1:4] | Species, data=iris)
> library(ggplot2)
> qplot(Sepal.Length, Sepal.Width, data=iris, facets=Species ~.)

除了上面的图以外,还有更多比较复杂的图可以通过包‘ggplot’实现。

5、将图标保存到文件

在数据分析中会产生很多图片,为了能够在后面的程序中用到那些图表需要将它们保存起来。R提供了很多保存文件的函数。下面的例子就是将图表保存为pdf文件。另外,可以使用函数ps()和postscript()将图片保存为ps文件,使用bmp()、jpeg()、png()以及tiff()可以保存为对应的图片格式文件。注意画完图以后需要使用函数graphics.off()或者dev.off()关闭画图设备。

# 创建一个myPlot.pdf文件,并在里面画图,画完图后关闭图片设备
> pdf("myPlot.pdf")
> x <- 1:50
> plot(x, log(x))
> graphics.off()

更多关于数据挖掘的课程细节请参考:实验楼课程

[译]用R语言做挖掘数据《二》的更多相关文章

  1. [译]用R语言做挖掘数据《六》

    异常值检测 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: ...

  2. [译]用R语言做挖掘数据《七》

    时间序列与数据挖掘 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用 ...

  3. [译]用R语言做挖掘数据《五》

    介绍 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. ...

  4. [译]用R语言做挖掘数据《四》

    回归 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. ...

  5. [译]用R语言做挖掘数据《三》

    决策树和随机森林 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到 ...

  6. [译]用R语言做挖掘数据《一》

    介绍 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. ...

  7. R语言实现金融数据的时间序列分析及建模

    R语言实现金融数据的时间序列分析及建模 一 移动平均    移动平均能消除数据中的季节变动和不规则变动.若序列中存在周期变动,则通常以周期为移动平均项数.移动平均法可以通过数据显示出数据长期趋势的变动 ...

  8. 用R语言 做回归分析

    使用R做回归分析整体上是比较常规的一类数据分析内容,下面我们具体的了解用R语言做回归分析的过程. 首先,我们先构造一个分析的数据集 x<-data.frame(y=c(102,115,124,1 ...

  9. R语言分析朝阳医院数据

    R语言分析朝阳医院数据 本次实践通过分析朝阳医院2016年销售数据,得出“月均消费次数”.“月均消费金额”.“客单价”.“消费趋势”等结果,并据此作出可视化图形. 一.读取数据: library(op ...

随机推荐

  1. SQL Server Job

    1. SQL Server Job创建:(SQL Server 代理 - 作业)鼠标右键.新建作业. 2.[常规]选项:定义作业名称.和说明信息. 3:[步骤]选项:新建步骤 4:定义步骤名称.设置对 ...

  2. .Net Mvc5Filter与权限认证扩展

    WebForm 在做WebForm的时候,如果我们要实现某页面登陆后才能访问,这个非常容易实现 public partial class IndexForm : Page { protected vo ...

  3. 【OCP|052】OCP 11g最新考题收集整理-第6题

    6.You are installing Oracle Grid Infrastructure by using the Oracle Universal Installer (OUI). You s ...

  4. 构造函数详解,explicit,初始化列表

    一.构造函数 在类中有一种特殊的成员函数,它的名字与类名相同,我们在创建类的时候,这个特殊的成员函数就会被系统调用.这个成员函数,就叫“构造函数”. 因为构造函数会被系统自动调动,构造函数的目的就是初 ...

  5. 哈弗曼树的理解和实现(Java)

    哈弗曼树概述 哈弗曼树又称最优树,是一种带权路径长度最短的树,在实际中有广泛的用途.哈弗曼树的定义,涉及路径.路径长度.权等概念.哈弗曼树可以用于哈弗曼编码,用于压缩,用于密码学等. 哈弗曼树的一些定 ...

  6. POJ 2209

    #include<iostream> #include<stdio.h> #include<algorithm> #include<math.h> #d ...

  7. localhost, 127.0.0.1, 0.0.0.0

    总结: localhost:是一个域名.域名可以认为是某个ip的别称,便于记忆.通常localhost对应的ip是127.0.0.1,不过这个也可以设置,参见知乎回答 127.0.0.1:是一个回环地 ...

  8. Windows下部署安装Docker

    好长时间没用Docker,最近准备部署一下,做个记录,今天早上去官网下载,发现Docker开始区分Docker Community Edition(社区版)和Docker Enterprise Edi ...

  9. Python unittest第一篇:基础入门+命令行编译

    unittest单元测试框架最初受JUnit启发,与其他语言的主要单元测试框架具有相似的风格. 它支持测试自动化,支持开启或关闭某个测试,支持结合测试.另外它可以生成各个单元测试的报告.为了实现以上功 ...

  10. smtp自动发送邮件demo

    using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Net ...