http://www.spoj.com/problems/PGCD/en/

题意:

给出a,b区间,求该区间内满足gcd(x,y)=质数的个数。

思路:

设f(n)为 gcd(x,y)=p的个数,那么F(n)为 p | gcd(x,y)的个数,显然可得F(n)=(x/p)*(y/p)。

这道题目因为可以是不同的质数,所以需要枚举质数,

但是这样枚举太耗时,所以在这里令t=pk,

这样一来的话,我们只需要预处理u(t/p)的前缀和,之后像之前的题一样分块处理就可以了。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn = 1e7 + ; int a, b; bool check[maxn];
int prime[maxn];
int mu[maxn];
ll sum[maxn]; void Mobius()
{
memset(check, false, sizeof(check));
mu[] = ;
int tot = ;
for (int i = ; i <= maxn; i++)
{
if (!check[i])
{
prime[tot++] = i;
mu[i] = -;
}
for (int j = ; j < tot; j++)
{
if (i * prime[j] > maxn)
{
break;
}
check[i * prime[j]] = true;
if (i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
} sum[]=;
for(int i=;i<tot;i++)
{
for(int j=prime[i];j<maxn;j+=prime[i])
{
sum[j]+=mu[j/prime[i]];
}
}
for(int i=;i<maxn;i++)
sum[i]+=sum[i-];
return ;
} ll solve(int n, int m)
{
if(n>m) swap(n,m);
ll ans=; for(int i=,last=;i<=n;i=last+)
{
last=min(n/(n/i),m/(m/i));
ans+=(sum[last]-sum[i-])*(n/i)*(m/i);
}
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
int T;
Mobius(); scanf("%d",&T);
while(T--)
{
scanf("%d%d",&a,&b);
ll ans = solve(a,b);
printf("%lld\n",ans);
}
return ;
}

SPOJ - PGCD Primes in GCD Table(莫比乌斯反演)的更多相关文章

  1. * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)

    题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...

  2. 【HDU4947】GCD Array (莫比乌斯反演+树状数组)

    BUPT2017 wintertraining(15) #5H HDU- 4947 题意 有一个长度为l的数组,现在有m个操作,第1种为1 n d v,给下标x 满足gcd(x,n)=d的\(a_x\ ...

  3. SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)

    4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the results of ...

  4. SPOJ4491. Primes in GCD Table(gcd(a,b)=d素数,(1&lt;=a&lt;=n,1&lt;=b&lt;=m))加强版

    SPOJ4491. Primes in GCD Table Problem code: PGCD Johnny has created a table which encodes the result ...

  5. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  6. 【BZOJ2818】Gcd(莫比乌斯反演)

    [BZOJ2818]Gcd(莫比乌斯反演) 题面 Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Ou ...

  7. 【HDU1695】GCD(莫比乌斯反演)

    [HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c= ...

  8. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  9. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

随机推荐

  1. 【SharePoint 2010】将Sharepoint Server 2010部署到WINDOWS 7

    1.部署-安装环境: 在这里先说明一下:2007的版本中我们只能装在WINDOWS 2003 SERVER 上,这种限制在2010被彻底打破了.我们可以将它安装在VISTA/WINDOWS 7/SER ...

  2. angularJS中的MVC思想?

    mvc 思想: 将应用程序的组成,划分为三个部分:model , controller 和 view ; - 控制器的作用是用来初始化模型用的: - 模型就是用于存储数据的: - 视图是展示数据的: ...

  3. UPDATE从左向右,变量优先,逐行更新.顺序执行的,可以交换两列之间的值

    CREATE TABLE tab_update (id TINYINT,n1 NVARCHAR(30),v1 NVARCHAR(30),s1 NVARCHAR(30)) INSERT INTO tab ...

  4. Requested bean is currently in creation: Is there an unresolvable circular reference?

    spring容器初始化报错:循环依赖,错误信息如下: Requested bean is currently in creation: Is there an unresolvable circula ...

  5. 170614、MySQL存储引擎-MyISAM与InnoDB区别

    MyISAM 和InnoDB 讲解 InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定.基本的差别为:MyISAM类型不支持事务处理等高级处理 ...

  6. java个人所得税计算器

    class Caculate{ private String name; private double money; private double actual; /** * @param usern ...

  7. Wormholes---poj3259(最短路 spfa 判断负环 模板)

    题目链接:http://poj.org/problem?id=3259 题意是问是否能通过虫洞回到过去: 虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts. 我们把虫洞看成是一条负权路,问 ...

  8. Kubernetes实战(二):k8s v1.11.1 prometheus traefik组件安装及集群测试

    1.traefik traefik:HTTP层路由,官网:http://traefik.cn/,文档:https://docs.traefik.io/user-guide/kubernetes/ 功能 ...

  9. yum whatprovides 查找哪个包可以提供缺失的文件

    yum whatprovides 查找哪个包可以提供缺失的文件

  10. MySQL不能启动 Can't start server : Bind on unix socke

    MySQL服务器突然不能启动,查看最后的启动日志如下: 080825 09:38:04 mysqld started080825 9:38:04 [ERROR] Can't start server ...