题目

发现要求配对的条件是这样

\[a_j|a_i,\frac{a_i}{a_j}=p_1
\]

我们考虑一下再来一个\(a_k\),满足

\[a_k|a_j,\frac{a_j}{a_k}=p_2
\]

显然\(a_i=a_jp_1,a_j=a_kp_2\),于是\(a_i=p_1p_2\times a_k\)

显然\(p_1p_2\)不会是一个质数,于是我们大胆得出一个结论,如果\(a_i\)能和\(a_j\)配对,那么\(a_i\)就不能和其他能和\(a_j\)配对的数配对

于是经过这样一番简单分析,发现这是一二分图

那么做法就很显然了,我们将这张图来一个黑白染色,之后按照题目要求连边就好了

至于这道题要求在费用为正的情况下流量最大,最大费用最大流只能保证最大流的时候费用最大,不能保证费用为正

但是我们知道\(spfa\)去增广出的最长路肯定越来越小,于是我们一旦发现当前费用乘上流量小于\(0\)了,以后就不可能再使得费用为正了,于是在这个之后判断一下剩余流量退出就好了

当然,由于只会写板子,还是边权取反的最小费用最大流好写

代码

#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define int long long
const int maxn=205;
const int inf=99999999999;
inline int read() {
char c=getchar();int r=1,x=0;
while(c<'0'||c>'9') {if(c=='-') r=-1;c=getchar();}
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return r*x;
}
std::vector<int> v[maxn];
std::queue<int> q;
struct E{int v,nxt,f;LL w;}e[205*205*10];
int head[maxn],d[maxn],vis[maxn];
int a[maxn],b[maxn],c[maxn],col[maxn];
int S,T,n,num=1;
inline void C(int x,int y,LL w,int f) {
e[++num].v=y;e[num].nxt=head[x];head[x]=num;
e[num].f=f,e[num].w=w;
}
inline void add(int x,int y,LL w,int f) {C(x,y,-1*w,f),C(y,x,w,0);}
inline int SPFA() {
for(re int i=S;i<=T;i++) vis[i]=0,d[i]=inf;
q.push(T),d[T]=0;
while(!q.empty()) {
int k=q.front();q.pop();vis[k]=0;
for(re int i=head[k];i;i=e[i].nxt)
if(e[i^1].f&&d[e[i].v]>d[k]+e[i^1].w) {
d[e[i].v]=d[k]+e[i^1].w;
if(!vis[e[i].v]) q.push(e[i].v),vis[e[i].v]=1;
}
}
return d[S]<inf;
}
int dfs(int x,int now) {
if(x==T||!now) return now;
int flow=0,ff;vis[x]=1;
for(re int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].v]&&e[i].f&&d[e[i].v]==d[x]+e[i^1].w) {
ff=dfs(e[i].v,min(now,e[i].f));
if(ff<=0) continue;
now-=ff,flow+=ff;e[i].f-=ff,e[i^1].f+=ff;
if(!now) break;
}
return flow;
}
inline int check(int x) {
if(x==1) return 0;
for(re int i=2;i*i<=x;i++)
if(x%i==0) return 0;
return 1;
}
void paint(int x,int now) {
col[x]=now;
for(re int i=0;i<v[x].size();i++)
if(col[v[x][i]]==2) paint(v[x][i],now^1);
}
signed main() {
n=read();T=n+1;
for(re int i=1;i<=n;i++) a[i]=read();
for(re int i=1;i<=n;i++) b[i]=read();
for(re int i=1;i<=n;i++) c[i]=read();
for(re int i=1;i<=n;i++)
for(re int j=1;j<=n;j++)
if(a[i]%a[j]==0&&check(a[i]/a[j]))
v[i].push_back(j),v[j].push_back(i);
for(re int i=1;i<=n;i++) col[i]=2;
for(re int i=1;i<=n;i++)
if(col[i]==2) paint(i,1);
for(re int i=1;i<=n;i++)
if(col[i]) add(S,i,0,b[i]);
else add(i,T,0,b[i]);
for(re int i=1;i<=n;i++) {
if(!col[i]) continue;
for(re int j=0;j<v[i].size();j++)
add(i,v[i][j],(LL)c[i]*(LL)c[v[i][j]],inf);
}
int t=0,ans=0,flag=1,F=0;
while(SPFA()) {
vis[T]=1;
while(vis[T]) {
for(re int i=S;i<=T;i++) vis[i]=0;
t=dfs(S,inf);
if(ans+t*d[S]>0) {
F+=(0-ans)/d[S];
flag=0;break;
}
ans+=t*d[S],F+=t;
}
if(!flag) break;
}
printf("%lld\n",F);
return 0;
}

[SDOI2016]数字配对的更多相关文章

  1. 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 820  Solved: 345[Submit][Status ...

  2. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  3. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  4. BZOJ 4514: [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1606  Solved: 608[Submit][Statu ...

  5. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  6. BZOJ4514——[Sdoi2016]数字配对

    有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的 ...

  7. bzoj4514 [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  8. BZOJ4514[Sdoi2016]数字配对——最大费用最大流

    题目描述 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci ...

  9. bzoj4514 [Sdoi2016]数字配对(网络流)

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  10. 4514: [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

随机推荐

  1. php常用的时间函数

    测试环境:php5.3.29 unix时间戳(从Unix 纪元(January 1 1970 00:00:00 GMT)到给定时间的秒数.).以下简称时间戳. 设置默认时区 date_default_ ...

  2. PhpStorm 破解及 XDebug 调试

    PhpStorm 破解及 XDebug 调试 PhpStorm 破解 PhpStorm 10.0.2 破解 地址:http://jingyan.baidu.com/article/20095761cb ...

  3. Hadoop源码学习笔记(4) ——Socket到RPC调用

    Hadoop源码学习笔记(4) ——Socket到RPC调用 Hadoop是一个分布式程序,分布在多台机器上运行,事必会涉及到网络编程.那这里如何让网络编程变得简单.透明的呢? 网络编程中,首先我们要 ...

  4. MYSQL-EXPLAIN 命令详解 (转载)

    EXPLAIN 命令详解   在工作中,我们用于捕捉性能问题最常用的就是打开慢查询,定位执行效率差的SQL,那么当我们定位到一个SQL以后还不算完事,我们还需要知道该SQL的执行计划,比如是全表扫描, ...

  5. Java 学习笔记(1)——java基础语法

    最近抽时间在学习Java,目前有了一点心得,在此记录下来. 由于我自己之前学过C/C++,而Java的语法与C/C++基本类似,所以这一系列文章我并不想从基础一点点的写,我想根据我已有的C/C++经验 ...

  6. sql: MySQL and Microsoft SQL Server Stored Procedures IN, OUT using csharp code

    MySQL存储过程: #插入一条返回值涂聚文注 DELIMITER $$ DROP PROCEDURE IF EXISTS `geovindu`.`proc_Insert_BookKindOut` $ ...

  7. WC前的颓废——带花树

    QAQ现在很不想写题解博客那就来写个算法吧QAQ... 带花树 题目 来看个题... UOJ79. 某机房里有\(n\)个OIer,其中有\(n\)个男生,\(0\)个女生.现在他们要两两配对. 有\ ...

  8. (PowerShell) 重命名文件

    Get-ChildItem -Path C:\temp\test -Filter *.txt | Rename-Item -NewName {$_.Basename.Replace("Old ...

  9. Benefits of encapsulation

    ①:通过方法来控制成员变量的操作,提高了代码的安全性. ②:把代码用方法进行封装,提高了代码的复用性.

  10. Java 快速入门-06-JDK 目录文件说明

    Java 快速入门-06-JDK 目录文件说明 JDK:开发环境,搞技术的人或者应用服务器使用 JRE:运行环境,如浏览器插件或者Swing界面的客户端等最终用户需要使用 JDK自含一个JRE,并依赖 ...