[AT2172] [agc007_e] Shik and Travel
题目链接
AtCoder:https://agc007.contest.atcoder.jp/tasks/agc007_e
洛谷:https://www.luogu.org/problemnew/show/AT2172
Solution
首先由于每条边只能经过两次,所以每次到了\(x\)点就会遍历完\(x\)子树再出来。
考虑二分答案,设当前二分的答案为\(mid\)。
设二元组\((a,b)_x\)表示\(x\)子树下第一次走代价为\(a\)最后一次为\(b\),且中间的过程都\(\leqslant \rm mid\)的一种方案。
那么显然可以得到一个暴力:
我们暴力枚举当前点左儿子和右儿子的二元组,设为\((a,b)_{ls},(c,d)_{rs}\),设左儿子的边权为\(x\),右儿子为\(y\),那么如果满足:\(b+c+x+y\leqslant {\rm mid}\),那么我们可以得到一个新的二元组\((a+x,d+y)_x\)。
考虑如何优化这个玩意,显然对于一个\(a\)只需要一个最小的\(b\),对于\(b\)也同理。
所以显然可以使用\(\rm two \ pointer\)做到每次合并为\(O(sz)\),其中\(sz\)为个数之和。
但是这样可以被卡成\(O(n^2)\),我们加一个启发式合并,每次合并小的,那么每次最多就是\(2|\min(S_{ls},S_{rs})|\)的,总复杂度\(O(n\log^2 n\log \rm ans)\),如果归并排序的话每次处理都是有序的,复杂度可以降为\(O(n\log n \log \rm ans)\)。
#include<bits/stdc++.h>
using namespace std;
#define int long long
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
#define lf double
#define ll long long
#define pii pair<int,int >
#define fr first
#define sc second
#define mp make_pair
#define vec vector<pii >
#define pb push_back
#define iter vector <pii > :: iterator
#define for_vec(i,x) for(iter i=x.begin();i!=x.end();i++)
#define _sort(x,y) sort(x.begin(),x.end(),y)
#define I (int)
const int maxn = 3e5+10;
const int inf = 1e9;
const lf eps = 1e-8;
int cmpx(pii x,pii y) {return x.fr<y.fr;}
int cmpy(pii x,pii y) {return x.sc<y.sc;}
int son[maxn][2],v[maxn][2],n,d[maxn],mid,mn[maxn];
vec f[maxn];
void solve(vec &ls,vec &rs,vec &s) {
if(ls.size()>rs.size()) swap(ls,rs); //启发式合并
if(!s.empty()) s.clear();
_sort(ls,cmpy),_sort(rs,cmpx);
mn[0]=rs[0].sc;for(int i=1;i<I rs.size();i++) mn[i]=min(mn[i-1],rs[i].sc);
int p1=0,p2=rs.size()-1;
for(;p1<I ls.size();p1++) {
while(p2>=0&&ls[p1].sc+rs[p2].fr>mid) p2--;
if(~p2) s.pb(mp(ls[p1].fr,mn[p2]));
}
_sort(ls,cmpx),_sort(rs,cmpy);
mn[0]=rs[0].fr;for(int i=1;i<I rs.size();i++) mn[i]=min(mn[i-1],rs[i].fr);
for(p1=0,p2=rs.size()-1;p1<I ls.size();p1++) {
while(p2>=0&&ls[p1].fr+rs[p2].sc>mid) p2--;
if(~p2) s.pb(mp(mn[p2],ls[p1].sc));
}
}
void dfs(int x) {
if(!son[x][0]) return f[x].pb(mp(0,0)),void();
int l=son[x][0],r=son[x][1];dfs(l),dfs(r);
vec &ls=f[l],&rs=f[r];
for_vec(i,ls) i->fr+=v[x][0],i->sc+=v[x][0];
for_vec(i,rs) i->fr+=v[x][1],i->sc+=v[x][1];
solve(ls,rs,f[x]);ls.clear(),rs.clear();
}
signed main() {
read(n);
for(int i=2,x,y;i<=n;i++) read(x),read(y),son[x][d[x]]=i,v[x][d[x]++]=y;
int l=0,r=1e10,ans=1e10;
while(l<=r) {
mid=(l+r)>>1,dfs(1);
if(f[1].empty()) l=mid+1;
else r=mid-1,ans=mid;f[1].clear();
}write(ans);
return 0;
}
[AT2172] [agc007_e] Shik and Travel的更多相关文章
- 【AtCoder Grand Contest 007E】Shik and Travel [Dfs][二分答案]
Shik and Travel Time Limit: 50 Sec Memory Limit: 512 MB Description 给定一棵n个点的树,保证一个点出度为2/0. 遍历一遍,要求每 ...
- AGC007E Shik and Travel 解题报告
AGC007E Shik and Travel 题目大意:\(n\) 个点的二叉树,每个点要么两个儿子,要么没有儿子,每条边有边权. 你从 \(1\) 号节点出发,走到一个叶子节点.然后每一天,你可以 ...
- AT2172 Shik and Travel
题目描述: luogu 题解: 二分+暴力$vector$+$dfs$. 记录下所有可能的子树内合法方案,双指针+归并合并. 代码: #include<vector> #include&l ...
- AtCoder Grand Contest 007 E:Shik and Travel
题目传送门:https://agc007.contest.atcoder.jp/tasks/agc007_e 题目翻译 现在有一个二叉树,除了叶子每个结点都有两个儿子.这个二叉树一共有\(m\)个叶子 ...
- AtCoder AGC007E Shik and Travel (二分、DP、启发式合并)
题目链接 https://atcoder.jp/contests/agc007/tasks/agc007_e 题解 首先有个很朴素的想法是,二分答案\(mid\)后使用可行性DP, 设\(dp[u][ ...
- [AGC007E] Shik and Travel
题目 给定一棵n节点的 以1为根的 满二叉树 (每个非叶子节点恰好有两个儿子)n−1 条边. 第ii条边连接 i+1号点 和 ai, 经过代价为vi设这棵树有m个叶子节点定义一次合法的旅行为:(1) ...
- [atAGC007E]Shik and Travel
二分枚举答案,判定答案是否合法 贪心:每一个叶子只能经过一遍,因此叶子的顺序一定是一个dfs序,即走完一棵子树中的所有叶子才会到子树外 根据这个贪心可以dp,设$f[k][l][r]$表示仅考虑$k$ ...
- 贪心/构造/DP 杂题选做Ⅲ
颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...
- AtCoder Grand Contest 007
AtCoder Grand Contest 007 A - Shik and Stone 翻译 见洛谷 题解 傻逼玩意 #include<cstdio> int n,m,tot;char ...
随机推荐
- (转) 转换Drupal7模块到Drupal8
转载地址:http://verynull.com/2015/11/02/Converting-7-x-modules-to-8-x/ 本节主要介绍如何把drupal7的模块转化为drupal8.参考资 ...
- 我们一起学习WCF 第四篇单通讯和双向通讯
前言:由于个人原因很久没有更新这个系列了,我会继续的更新这系列的文章.这一章是单向和双向通讯.所谓的单向就是只有发送却没有回复,双向是既有发送还有回复.就是有来无往代表单向,礼尚往来表示双向.下面我用 ...
- ABP 框架集成EF批量增加、删除、修改只针对使用mmsql的
AppService 层使用nuget 添加 EFCore.BulkExtensions 引用 using Abp.Application.Services.Dto; using Abp.Domain ...
- AWS探索及创建一个aws EC2实例
一.AWS登陆 1.百度搜索aws,或者浏览器输入:http://aws.amazon.com 2.输入账户及密码登陆(注册流程按照提示走即可) 二.创建EC2实例(相当于阿里云的ecs) 1.找到E ...
- KRKR基础篇(二)
这里介绍一些krkr的语法规范,具体的命令含义及用法以后再叙述 一:kag语法及基本概念 KAG使用的剧本语言为KAG Script,文件扩展名为.ks 脚本内的文字除 注释, 命令 , 段落标 ...
- Consul 架构(译)
Consul 架构 此篇文章主要对consul的相关内部技术细节进行简要概述. »术语 代理 - 代理是指consul集群中运行的consul实例,通过执行 consul agent 命令来启动. 代 ...
- 算法工程师进化-NLP之主题模型
1 引言 主题模型是文本挖掘的重要工具,近年来在学术界和工业届都获得了非常多的关注.学术界的工作主要集中在建模层面,即提出各种各样的主题模型来适应不同的场景,因此缺乏指导主题模型在工业场景落地的资源和 ...
- Spring Boot 整合JDBC 实现后端项目开发
一.前言 二.新建Spring Boot 项目 三.Spring Boot 整合JDBC 与MySQL 交互 3.1 新建数据表skr_user 3.2 Jdbcproject 项目结构如下 3.3 ...
- LVM缩小根分区
逻辑卷不是根分区都可以在线扩容和缩小 根分区是可以在线扩容,但不可以在线缩小 Linux系统进入救援模式 依次选择: 欢迎界面 ---------- Rescue installed system C ...
- dp算法之硬币找零问题
题目:硬币找零 题目介绍:现在有面值1.3.5元三种硬币无限个,问组成n元的硬币的最小数目? 分析:现在假设n=10,画出状态分布图: 硬币编号 硬币面值p 1 1 2 3 3 5 编号i/n总数j ...