转自: http://aredko.blogspot.com/2014/02/knowing-how-all-your-components-work.html

In today's post we will try to cover very interesting and important topic: distributed system tracing. What it practically means is that we will try to trace the request from the point it was issued by the client to the point the response to this request was received. At first, it looks quite straightforward but in reality it may involve many calls to several other systems, databases, NoSQL stores, caches, you name it ...

In 2010 Google published a paper about Dapper, a large-scale distributed systems tracing infrastructure (very interesting reading by the way). Later on, Twitter built its own implementation based on Dapper paper, called Zipkin and that's the one we are going to look at.

We will build a simple JAX-RS 2.0 server using great Apache CXF library. For the client side, we will use JAX-RS 2.0 client API and by utilizing Zipkin we will trace all the interactions between the client and the server (as well as everything happening on server side). To make an example a bit more illustrative, we will pretend that server uses some kind of database to retrieve the data. Our code will be a mix of pure Java and a bit of Scala (the choice of Scala will be cleared up soon).

One additional dependency in order for Zipkin to work is Apache Zookeeper. It is required for coordination and should be started in advance. Luckily, it is very easy to do:

  • download the release from http://zookeeper.apache.org/releases.html (the current stable version at the moment of writing is 3.4.5)
  • unpack it into zookeeper-3.4.5
  • copy zookeeper-3.4.5/conf/zoo_sample.cfg to zookeeper-3.4.5/conf/zoo.cfg
  • and just start Apache Zookeeper server
    Windows: zookeeper-3.4.5/bin/zkServer.cmd
    Linux: zookeeper-3.4.5/bin/zkServer.sh start

Now back to ZipkinZipkin is written in Scala. It is still in active development and the best way to start off with it is just by cloning its GitHub repository and build it from sources:

git clone https://github.com/twitter/zipkin.git

From architectural prospective, Zipkin consists of three main components:

  • collector: collects traces across the system
  • query: queries collected traces
  • web: provides web-based UI to show the traces

To run them, Zipkin guys provide useful scripts in the bin folder with the only requirement that JDK 1.7 should be installed:

  • bin/collector
  • bin/query
  • bin/web

Let's execute these scripts and ensure that every component has been started successfully, with no stack traces on the console (for curious readers, I was not able to make Zipkin work on Windows so I assume we are running it on Linux box). By default,Zipkin web UI is available on port 8080. The storage for traces is embedded SQLite engine. Though it works, the better storages (like awesome Redis) are available.

The preparation is over, let's do some code. We will start with JAX-RS 2.0 client part as it's very straightforward (ClientStarter.java):

01 package com.example.client;
02  
03 import javax.ws.rs.client.Client;
04 import javax.ws.rs.client.ClientBuilder;
05 import javax.ws.rs.core.MediaType;
06 import javax.ws.rs.core.Response;
07  
08 import com.example.zipkin.Zipkin;
09 import com.example.zipkin.client.ZipkinRequestFilter;
10 import com.example.zipkin.client.ZipkinResponseFilter;
11  
12 public class ClientStarter {
13   public static void main( final String[] args ) throws Exception {
14     final Client client = ClientBuilder
15       .newClient()
16       .register( new ZipkinRequestFilter( "People", Zipkin.tracer() ), 1 )
17       .register( new ZipkinResponseFilter( "People", Zipkin.tracer() ), 1 );       
18                          
19     final Response response = client
20       .target( "http://localhost:8080/rest/api/people" )
21       .request( MediaType.APPLICATION_JSON )
22       .get();
23  
24     if( response.getStatus() == 200 ) {
25       System.out.println( response.readEntity( String.class ) );
26     }
27          
28     response.close();
29     client.close();
30          
31     // Small delay to allow tracer to send the trace over the wire
32     Thread.sleep( 1000 );
33   }
34 }

Except a couple of imports and classes with Zipkin in it, everything should look simple. So what those ZipkinRequestFilter andZipkinResponseFilter are for? Zipkin is awesome but it's not a magical tool. In order to trace any request in distributed system, there should be some context passed along with it. In REST/HTTP world, it's usually request/response headers. Let's take a look on ZipkinRequestFilter first (ZipkinRequestFilter.scala):

01 package com.example.zipkin.client
02  
03 import javax.ws.rs.client.ClientRequestFilter
04 import javax.ws.rs.ext.Provider
05 import javax.ws.rs.client.ClientRequestContext
06 import com.twitter.finagle.http.HttpTracing
07 import com.twitter.finagle.tracing.Trace
08 import com.twitter.finagle.tracing.Annotation
09 import com.twitter.finagle.tracing.TraceId
10 import com.twitter.finagle.tracing.Tracer
11  
12 @Provider
13 class ZipkinRequestFilter( val name: String, val tracer: Tracer ) extendsClientRequestFilter {
14   def filter( requestContext: ClientRequestContext ): Unit = {     
15     Trace.pushTracerAndSetNextId( tracer, true )
16   
17     requestContext.getHeaders().add( HttpTracing.Header.TraceId, Trace.id.traceId.toString )
18     requestContext.getHeaders().add( HttpTracing.Header.SpanId, Trace.id.spanId.toString )
19           
20     Trace.id._parentId foreach { id =>
21       requestContext.getHeaders().add( HttpTracing.Header.ParentSpanId, id.toString )
22     }   
23  
24     Trace.id.sampled foreach { sampled =>
25       requestContext.getHeaders().add( HttpTracing.Header.Sampled, sampled.toString )
26     }
27  
28     requestContext.getHeaders().add( HttpTracing.Header.Flags, Trace.id.flags.toLong.toString )
29               
30     if( Trace.isActivelyTracing ) {
31       Trace.recordRpcname( name,  requestContext.getMethod() )
32       Trace.recordBinary( "http.uri", requestContext.getUri().toString()  )
33       Trace.record( Annotation.ClientSend() )   
34     }
35   }
36 }

A bit of Zipkin internals will make this code superclear. The central part of Zipkin API is Trace class. Every time we would like to initiate tracing, we should have a Trace Id and the tracer to actually trace it. This single line generates new Trace Id and register the tracer (internally this data is held in thread local state).

1 Trace.pushTracerAndSetNextId( tracer, true )

Traces are hierarchical by nature, so do Trace Ids: every Trace Id could be a root or part of another trace. In our example, we know for sure that we are the first and as such the root of the trace. Later on the Trace Id is wrapped into HTTP headers and will be passed along the request (we will see on server side how it is being used). The last three lines associate the useful information with the trace: name of our API (People), HTTP method, URI and most importantly, that it's the client sending the request to the server.

1 Trace.recordRpcname( name,  requestContext.getMethod() )
2 Trace.recordBinary( "http.uri", requestContext.getUri().toString()  )
3 Trace.record( Annotation.ClientSend() )

The ZipkinResponseFilter does the reverse to ZipkinRequestFilter and extract the Trace Id from the request headers (ZipkinResponseFilter.scala):

01 package com.example.zipkin.client
02  
03 import javax.ws.rs.client.ClientResponseFilter
04 import javax.ws.rs.client.ClientRequestContext
05 import javax.ws.rs.client.ClientResponseContext
06 import javax.ws.rs.ext.Provider
07 import com.twitter.finagle.tracing.Trace
08 import com.twitter.finagle.tracing.Annotation
09 import com.twitter.finagle.tracing.SpanId
10 import com.twitter.finagle.http.HttpTracing
11 import com.twitter.finagle.tracing.TraceId
12 import com.twitter.finagle.tracing.Flags
13 import com.twitter.finagle.tracing.Tracer
14  
15 @Provider
16 class ZipkinResponseFilter( val name: String, val tracer: Tracer ) extendsClientResponseFilter { 
17   def filter( requestContext: ClientRequestContext, responseContext: ClientResponseContext ): Unit = {
18     val spanId = SpanId.fromString( requestContext.getHeaders().getFirst( HttpTracing.Header.SpanId ).toString() )
19  
20     spanId foreach { sid =>
21       val traceId = SpanId.fromString( requestContext.getHeaders().getFirst( HttpTracing.Header.TraceId ).toString() )
22          
23       val parentSpanId = requestContext.getHeaders().getFirst( HttpTracing.Header.ParentSpanId ) match {
24         case s: String => SpanId.fromString( s.toString() )
25         case _ => None
26       }
27  
28       val sampled = requestContext.getHeaders().getFirst( HttpTracing.Header.Sampled ) match {
29         case s: String =>  s.toString.toBoolean
30         case _ => true
31       }
32          
33       val flags = Flags( requestContext.getHeaders().getFirst( HttpTracing.Header.Flags ).toString.toLong )       
34       Trace.setId( TraceId( traceId, parentSpanId, sid, Option( sampled ), flags ) )
35     }
36        
37     if( Trace.isActivelyTracing ) {
38       Trace.record( Annotation.ClientRecv() )
39     }
40   }
41 }

Strictly speaking, in our example it's not necessary to extract the Trace Id from the request because both filters should be executed by the single thread. But the last line is very important: it marks the end of our trace by saying that client has received the response.

1 Trace.record( Annotation.ClientRecv() )

What's left is actually the tracer itself (Zipkin.scala):

01 package com.example.zipkin
02  
03 import com.twitter.finagle.stats.DefaultStatsReceiver
04 import com.twitter.finagle.zipkin.thrift.ZipkinTracer
05 import com.twitter.finagle.tracing.Trace
06 import javax.ws.rs.ext.Provider
07  
08 object Zipkin {
09   lazy val tracer = ZipkinTracer.mk( host = "localhost", port = 9410, DefaultStatsReceiver, 1 )
10 }

If at this point you are confused what all those traces and spans mean please look through this documentation page, you will get the basic understanding of those concepts.

At this point, there is nothing left on the client side and we are good to move to the server side. Our JAX-RS 2.0 server will expose the single endpoint (PeopleRestService.java):

01 package com.example.server.rs;
02  
03 import java.util.Arrays;
04 import java.util.Collection;
05 import java.util.concurrent.Callable;
06  
07 import javax.ws.rs.GET;
08 import javax.ws.rs.Path;
09 import javax.ws.rs.Produces;
10  
11 import com.example.model.Person;
12 import com.example.zipkin.Zipkin;
13  
14 @Path"/people" )
15 public class PeopleRestService {
16   @Produces( { "application/json" } )
17   @GET
18   public Collection< Person > getPeople() {
19     return Zipkin.invoke( "DB""FIND ALL"new Callable< Collection< Person > >() {
20       @Override
21       public Collection<person> call() throws Exception {
22         return Arrays.asList( new Person( "Tom""Bombdil" ) );
23       }  
24     } );  
25   }
26 }
27 </person>

As we mentioned before, we will simulate the access to database and generate a child trace by using Zipkin.invoke wrapper (which looks very simple, Zipkin.scala):

01 package com.example.zipkin
02  
03 import java.util.concurrent.Callable
04 import com.twitter.finagle.stats.DefaultStatsReceiver
05 import com.twitter.finagle.tracing.Trace
06 import com.twitter.finagle.zipkin.thrift.ZipkinTracer
07 import com.twitter.finagle.tracing.Annotation
08  
09 object Zipkin {
10   lazy val tracer = ZipkinTracer.mk( host = "localhost", port = 9410, DefaultStatsReceiver, 1 )
11      
12   def invoke[ R ]( service: String, method: String, callable: Callable[ R ] ): R = Trace.unwind {
13     Trace.pushTracerAndSetNextId( tracer, false )     
14        
15     Trace.recordRpcname( service, method );
16     Trace.record( new Annotation.ClientSend() );
17            
18     try {
19       callable.call()
20     finally {
21       Trace.record( new Annotation.ClientRecv() );
22     }
23   }  
24 }

As we can see, in this case the server itself becomes a client for some other service (database).

The last and most important part of the server is to intercept all HTTP requests, extract the Trace Id from them so it will be possible to associate more data with the trace (annotate the trace). In Apache CXF it's very easy to do by providing own invoker (ZipkinTracingInvoker.scala):

01 package com.example.zipkin.server
02  
03 import org.apache.cxf.jaxrs.JAXRSInvoker
04 import com.twitter.finagle.tracing.TraceId
05 import org.apache.cxf.message.Exchange
06 import com.twitter.finagle.tracing.Trace
07 import com.twitter.finagle.tracing.Annotation
08 import org.apache.cxf.jaxrs.model.OperationResourceInfo
09 import org.apache.cxf.jaxrs.ext.MessageContextImpl
10 import com.twitter.finagle.tracing.SpanId
11 import com.twitter.finagle.http.HttpTracing
12 import com.twitter.finagle.tracing.Flags
13 import scala.collection.JavaConversions._
14 import com.twitter.finagle.tracing.Tracer
15 import javax.inject.Inject
16  
17 class ZipkinTracingInvoker extends JAXRSInvoker {
18   @Inject val tracer: Tracer = null
19    
20   def trace[ R ]( exchange: Exchange )( block: => R ): R = {
21     val context = new MessageContextImpl( exchange.getInMessage() )
22     Trace.pushTracer( tracer )
23          
24     val id = Option( exchange.get( classOf[ OperationResourceInfo ] ) ) map { ori =>
25       context.getHttpHeaders().getRequestHeader( HttpTracing.Header.SpanId ).toList match {
26         case x :: xs => SpanId.fromString( x ) map { sid =>
27           val traceId = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.TraceId ).toList match {
28             case x :: xs => SpanId.fromString( x )
29             case _ => None
30           }
31            
32           val parentSpanId = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.ParentSpanId ).toList match {
33             case x :: xs => SpanId.fromString( x )
34             case _ => None
35           }
36    
37           val sampled = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.Sampled ).toList match {
38             case x :: xs =>  x.toBoolean
39             case _ => true
40           }
41                      
42           val flags = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.Flags ).toList match {
43             case x :: xs =>  Flags( x.toLong )
44             case _ => Flags()
45           }
46           
47           val id = TraceId( traceId, parentSpanId, sid, Option( sampled ), flags )                    
48           Trace.setId( id )
49          
50           if( Trace.isActivelyTracing ) {
51             Trace.recordRpcname( context.getHttpServletRequest().getProtocol(), ori.getHttpMethod() )
52             Trace.record( Annotation.ServerRecv() )
53           }
54          
55           id
56         }          
57            
58         case _ => None
59       }
60     }
61      
62     val result = block
63      
64     if( Trace.isActivelyTracing ) {
65       id map { id => Trace.record( new Annotation.ServerSend() ) }
66     }
67      
68     result
69   }
70    
71   @Override
72   override def invoke( exchange: Exchange, parametersList: AnyRef ): AnyRef = {
73     trace( exchange )( super.invoke( exchange, parametersList ) )    
74   }
75 }

Basically, the only thing this code does is extracting Trace Id from request and associating it with the current thread. Also please notice that we associate additional data with the trace marking the server participation.

1 Trace.recordRpcname( context.getHttpServletRequest().getProtocol(), ori.getHttpMethod() )
2 Trace.record( Annotation.ServerRecv() )

To see the tracing in live, let's start our server (please notice that sbt should be installed), assuming all Zipkin components andApache Zookeeper are already up and running:

sbt 'project server' 'run-main com.example.server.ServerStarter'

then the client:

sbt 'project client' 'run-main com.example.client.ClientStarter'

and finally open Zipkin web UI at http://localhost:8080. We should see something like that (depending how many times you have run the client):

Alternatively, we can build and run fat JARs using sbt-assembly plugin:

sbt assembly
java -jar server/target/zipkin-jaxrs-2.0-server-assembly-0.0.1-SNAPSHOT.jar
java -jar client/target/zipkin-jaxrs-2.0-client-assembly-0.0.1-SNAPSHOT.jar

If we click on any particular trace, the more detailed information will be shown, much resembling client <-> server <-> databasechain.

Even more details are shown when we click on particular element in the tree.

Lastly, the bonus part is components / services dependency graph.

As we can see, all the data associated with the trace is here and follows hierarchical structure. The root and child traces are detected and shown, as well as timelines for client send/receive and server receive/send chains. Our example is quite naive and simple, but even like that it demonstrates how powerful and useful distributed system tracing is. Thanks to Zipkin guys.

The complete source code is available on GitHub.

Knowing how all your components work together: distributed tracing with Zipkin的更多相关文章

  1. Sentry 监控 - Distributed Tracing 分布式跟踪

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  2. Steeltoe之Distributed Tracing篇

    Steeltoe里的分布式追踪功能与Spring Cloud Sleuth一样,支持在日志中记录追踪数据,或者上传到远端的服务,比如Zipkin. Logging 在Steeltoe中使用日志时需要引 ...

  3. spring-cloud/spring-cloud-sleuth github 项目 mark

    97  Star639 Fork335 spring-cloud/spring-cloud-sleuth CodeIssues 5Pull requests 1Projects 0WikiInsigh ...

  4. Awesome Flask

    Awesome Flask  A curated list of awesome Flask resources and plugins Awesome Flask Framework Admin i ...

  5. Awesome Flask Awesome

    A curated list of awesome Flask resources and plugins Awesome Flask Framework Admin interface Authen ...

  6. Build Telemetry for Distributed Services之Open Telemetry简介

    官网链接:https://opentelemetry.io/about/ OpenTelemetry is the next major version of the OpenTracing and  ...

  7. Build Telemetry for Distributed Services之OpenTracing实践

    官网:https://opentracing.io/docs/best-practices/ Best Practices This page aims to illustrate common us ...

  8. Build Telemetry for Distributed Services之Open Telemetry来历

    官网:https://opentelemetry.io/ github:https://github.com/open-telemetry/ Effective observability requi ...

  9. Build Telemetry for Distributed Services之OpenTracing简介

    官网地址:https://opentracing.io/ What is Distributed Tracing? Who Uses Distributed Tracing? What is Open ...

随机推荐

  1. Mybatis 插件实现动态设置参数

    原文地址:Mybatis 插件实现动态设置参数 博客地址:http://www.extlight.com 一.背景 笔者在搭建架构时,通常会利用泛型对 dao 层 和 service 层公共的代码(增 ...

  2. Phonegap下localStorage使用实践

    HTML5的Web Storage API提供了两种客户端存储数据的方法 localStorage和sessionStorage. localStorage没有时间限制,程序升级也不会消失,可以满足持 ...

  3. Bootstrap-CL:徽章

    ylbtech-Bootstrap-CL:徽章 1.返回顶部 1. Bootstrap 徽章(Badges) 本章将讲解 Bootstrap 徽章(Badges).徽章与标签相似,主要的区别在于徽章的 ...

  4. python HTMLTestRunner.py

    Mac下HTMLTestRunner.py存放路径: -/anaconda/lib/python3.6/site-packages/HTMLTestRunner.py 已经更改,python3可以直接 ...

  5. java中如何制定自定义异常

    package gys; public class ExpetionTest { public static void main(String[] args) { NumberCheck n=new ...

  6. ckplayer的Error #2033:Can not call javascript:ckstyle()解决

    在我们添加多个视频的时候,就会出现这个报错:Error #2033:Can not call javascript:ckstyle(); 但是也不是所有的浏览器都不能正常运行,我这边就是IE10不能正 ...

  7. 前端开发中常用的CSS选择器解析(一)

    你也许已经掌握了id.class.后台选择器这些基本的css选择器.但这远远不是css的全部.下面向大家系统的介绍css中最常用的选择器,包括我们最头痛的浏览器兼容性问题.掌握了它们,才能真正领略cs ...

  8. OpenCL 图像卷积 2

    ▶ 上一篇图像卷积 http://www.cnblogs.com/cuancuancuanhao/p/8535569.html.这篇使用了 OpenCV 从文件读取彩色的 jpeg 图像,进行边缘检测 ...

  9. OpenCL NativeKernel 计算矩阵乘法

    ▶ 使用函数 clEnqueueNativeKernel 来调用 C/C++ 本地函数(在 OpenCL 中将其看做回调函数),使用本地编译器(而不是 OpenCL 编译器)来编译和执行内核 ● 代码 ...

  10. tomcat8 安全加固

    本文基于tomcat8.0.24 1.删除文档和示例程序 [操作目的]删除示例文档 [加固方法]删除webapps/docs.examples.manager.ROOT.host-manager [是 ...