转自: http://aredko.blogspot.com/2014/02/knowing-how-all-your-components-work.html

In today's post we will try to cover very interesting and important topic: distributed system tracing. What it practically means is that we will try to trace the request from the point it was issued by the client to the point the response to this request was received. At first, it looks quite straightforward but in reality it may involve many calls to several other systems, databases, NoSQL stores, caches, you name it ...

In 2010 Google published a paper about Dapper, a large-scale distributed systems tracing infrastructure (very interesting reading by the way). Later on, Twitter built its own implementation based on Dapper paper, called Zipkin and that's the one we are going to look at.

We will build a simple JAX-RS 2.0 server using great Apache CXF library. For the client side, we will use JAX-RS 2.0 client API and by utilizing Zipkin we will trace all the interactions between the client and the server (as well as everything happening on server side). To make an example a bit more illustrative, we will pretend that server uses some kind of database to retrieve the data. Our code will be a mix of pure Java and a bit of Scala (the choice of Scala will be cleared up soon).

One additional dependency in order for Zipkin to work is Apache Zookeeper. It is required for coordination and should be started in advance. Luckily, it is very easy to do:

  • download the release from http://zookeeper.apache.org/releases.html (the current stable version at the moment of writing is 3.4.5)
  • unpack it into zookeeper-3.4.5
  • copy zookeeper-3.4.5/conf/zoo_sample.cfg to zookeeper-3.4.5/conf/zoo.cfg
  • and just start Apache Zookeeper server
    Windows: zookeeper-3.4.5/bin/zkServer.cmd
    Linux: zookeeper-3.4.5/bin/zkServer.sh start

Now back to ZipkinZipkin is written in Scala. It is still in active development and the best way to start off with it is just by cloning its GitHub repository and build it from sources:

git clone https://github.com/twitter/zipkin.git

From architectural prospective, Zipkin consists of three main components:

  • collector: collects traces across the system
  • query: queries collected traces
  • web: provides web-based UI to show the traces

To run them, Zipkin guys provide useful scripts in the bin folder with the only requirement that JDK 1.7 should be installed:

  • bin/collector
  • bin/query
  • bin/web

Let's execute these scripts and ensure that every component has been started successfully, with no stack traces on the console (for curious readers, I was not able to make Zipkin work on Windows so I assume we are running it on Linux box). By default,Zipkin web UI is available on port 8080. The storage for traces is embedded SQLite engine. Though it works, the better storages (like awesome Redis) are available.

The preparation is over, let's do some code. We will start with JAX-RS 2.0 client part as it's very straightforward (ClientStarter.java):

01 package com.example.client;
02  
03 import javax.ws.rs.client.Client;
04 import javax.ws.rs.client.ClientBuilder;
05 import javax.ws.rs.core.MediaType;
06 import javax.ws.rs.core.Response;
07  
08 import com.example.zipkin.Zipkin;
09 import com.example.zipkin.client.ZipkinRequestFilter;
10 import com.example.zipkin.client.ZipkinResponseFilter;
11  
12 public class ClientStarter {
13   public static void main( final String[] args ) throws Exception {
14     final Client client = ClientBuilder
15       .newClient()
16       .register( new ZipkinRequestFilter( "People", Zipkin.tracer() ), 1 )
17       .register( new ZipkinResponseFilter( "People", Zipkin.tracer() ), 1 );       
18                          
19     final Response response = client
20       .target( "http://localhost:8080/rest/api/people" )
21       .request( MediaType.APPLICATION_JSON )
22       .get();
23  
24     if( response.getStatus() == 200 ) {
25       System.out.println( response.readEntity( String.class ) );
26     }
27          
28     response.close();
29     client.close();
30          
31     // Small delay to allow tracer to send the trace over the wire
32     Thread.sleep( 1000 );
33   }
34 }

Except a couple of imports and classes with Zipkin in it, everything should look simple. So what those ZipkinRequestFilter andZipkinResponseFilter are for? Zipkin is awesome but it's not a magical tool. In order to trace any request in distributed system, there should be some context passed along with it. In REST/HTTP world, it's usually request/response headers. Let's take a look on ZipkinRequestFilter first (ZipkinRequestFilter.scala):

01 package com.example.zipkin.client
02  
03 import javax.ws.rs.client.ClientRequestFilter
04 import javax.ws.rs.ext.Provider
05 import javax.ws.rs.client.ClientRequestContext
06 import com.twitter.finagle.http.HttpTracing
07 import com.twitter.finagle.tracing.Trace
08 import com.twitter.finagle.tracing.Annotation
09 import com.twitter.finagle.tracing.TraceId
10 import com.twitter.finagle.tracing.Tracer
11  
12 @Provider
13 class ZipkinRequestFilter( val name: String, val tracer: Tracer ) extendsClientRequestFilter {
14   def filter( requestContext: ClientRequestContext ): Unit = {     
15     Trace.pushTracerAndSetNextId( tracer, true )
16   
17     requestContext.getHeaders().add( HttpTracing.Header.TraceId, Trace.id.traceId.toString )
18     requestContext.getHeaders().add( HttpTracing.Header.SpanId, Trace.id.spanId.toString )
19           
20     Trace.id._parentId foreach { id =>
21       requestContext.getHeaders().add( HttpTracing.Header.ParentSpanId, id.toString )
22     }   
23  
24     Trace.id.sampled foreach { sampled =>
25       requestContext.getHeaders().add( HttpTracing.Header.Sampled, sampled.toString )
26     }
27  
28     requestContext.getHeaders().add( HttpTracing.Header.Flags, Trace.id.flags.toLong.toString )
29               
30     if( Trace.isActivelyTracing ) {
31       Trace.recordRpcname( name,  requestContext.getMethod() )
32       Trace.recordBinary( "http.uri", requestContext.getUri().toString()  )
33       Trace.record( Annotation.ClientSend() )   
34     }
35   }
36 }

A bit of Zipkin internals will make this code superclear. The central part of Zipkin API is Trace class. Every time we would like to initiate tracing, we should have a Trace Id and the tracer to actually trace it. This single line generates new Trace Id and register the tracer (internally this data is held in thread local state).

1 Trace.pushTracerAndSetNextId( tracer, true )

Traces are hierarchical by nature, so do Trace Ids: every Trace Id could be a root or part of another trace. In our example, we know for sure that we are the first and as such the root of the trace. Later on the Trace Id is wrapped into HTTP headers and will be passed along the request (we will see on server side how it is being used). The last three lines associate the useful information with the trace: name of our API (People), HTTP method, URI and most importantly, that it's the client sending the request to the server.

1 Trace.recordRpcname( name,  requestContext.getMethod() )
2 Trace.recordBinary( "http.uri", requestContext.getUri().toString()  )
3 Trace.record( Annotation.ClientSend() )

The ZipkinResponseFilter does the reverse to ZipkinRequestFilter and extract the Trace Id from the request headers (ZipkinResponseFilter.scala):

01 package com.example.zipkin.client
02  
03 import javax.ws.rs.client.ClientResponseFilter
04 import javax.ws.rs.client.ClientRequestContext
05 import javax.ws.rs.client.ClientResponseContext
06 import javax.ws.rs.ext.Provider
07 import com.twitter.finagle.tracing.Trace
08 import com.twitter.finagle.tracing.Annotation
09 import com.twitter.finagle.tracing.SpanId
10 import com.twitter.finagle.http.HttpTracing
11 import com.twitter.finagle.tracing.TraceId
12 import com.twitter.finagle.tracing.Flags
13 import com.twitter.finagle.tracing.Tracer
14  
15 @Provider
16 class ZipkinResponseFilter( val name: String, val tracer: Tracer ) extendsClientResponseFilter { 
17   def filter( requestContext: ClientRequestContext, responseContext: ClientResponseContext ): Unit = {
18     val spanId = SpanId.fromString( requestContext.getHeaders().getFirst( HttpTracing.Header.SpanId ).toString() )
19  
20     spanId foreach { sid =>
21       val traceId = SpanId.fromString( requestContext.getHeaders().getFirst( HttpTracing.Header.TraceId ).toString() )
22          
23       val parentSpanId = requestContext.getHeaders().getFirst( HttpTracing.Header.ParentSpanId ) match {
24         case s: String => SpanId.fromString( s.toString() )
25         case _ => None
26       }
27  
28       val sampled = requestContext.getHeaders().getFirst( HttpTracing.Header.Sampled ) match {
29         case s: String =>  s.toString.toBoolean
30         case _ => true
31       }
32          
33       val flags = Flags( requestContext.getHeaders().getFirst( HttpTracing.Header.Flags ).toString.toLong )       
34       Trace.setId( TraceId( traceId, parentSpanId, sid, Option( sampled ), flags ) )
35     }
36        
37     if( Trace.isActivelyTracing ) {
38       Trace.record( Annotation.ClientRecv() )
39     }
40   }
41 }

Strictly speaking, in our example it's not necessary to extract the Trace Id from the request because both filters should be executed by the single thread. But the last line is very important: it marks the end of our trace by saying that client has received the response.

1 Trace.record( Annotation.ClientRecv() )

What's left is actually the tracer itself (Zipkin.scala):

01 package com.example.zipkin
02  
03 import com.twitter.finagle.stats.DefaultStatsReceiver
04 import com.twitter.finagle.zipkin.thrift.ZipkinTracer
05 import com.twitter.finagle.tracing.Trace
06 import javax.ws.rs.ext.Provider
07  
08 object Zipkin {
09   lazy val tracer = ZipkinTracer.mk( host = "localhost", port = 9410, DefaultStatsReceiver, 1 )
10 }

If at this point you are confused what all those traces and spans mean please look through this documentation page, you will get the basic understanding of those concepts.

At this point, there is nothing left on the client side and we are good to move to the server side. Our JAX-RS 2.0 server will expose the single endpoint (PeopleRestService.java):

01 package com.example.server.rs;
02  
03 import java.util.Arrays;
04 import java.util.Collection;
05 import java.util.concurrent.Callable;
06  
07 import javax.ws.rs.GET;
08 import javax.ws.rs.Path;
09 import javax.ws.rs.Produces;
10  
11 import com.example.model.Person;
12 import com.example.zipkin.Zipkin;
13  
14 @Path"/people" )
15 public class PeopleRestService {
16   @Produces( { "application/json" } )
17   @GET
18   public Collection< Person > getPeople() {
19     return Zipkin.invoke( "DB""FIND ALL"new Callable< Collection< Person > >() {
20       @Override
21       public Collection<person> call() throws Exception {
22         return Arrays.asList( new Person( "Tom""Bombdil" ) );
23       }  
24     } );  
25   }
26 }
27 </person>

As we mentioned before, we will simulate the access to database and generate a child trace by using Zipkin.invoke wrapper (which looks very simple, Zipkin.scala):

01 package com.example.zipkin
02  
03 import java.util.concurrent.Callable
04 import com.twitter.finagle.stats.DefaultStatsReceiver
05 import com.twitter.finagle.tracing.Trace
06 import com.twitter.finagle.zipkin.thrift.ZipkinTracer
07 import com.twitter.finagle.tracing.Annotation
08  
09 object Zipkin {
10   lazy val tracer = ZipkinTracer.mk( host = "localhost", port = 9410, DefaultStatsReceiver, 1 )
11      
12   def invoke[ R ]( service: String, method: String, callable: Callable[ R ] ): R = Trace.unwind {
13     Trace.pushTracerAndSetNextId( tracer, false )     
14        
15     Trace.recordRpcname( service, method );
16     Trace.record( new Annotation.ClientSend() );
17            
18     try {
19       callable.call()
20     finally {
21       Trace.record( new Annotation.ClientRecv() );
22     }
23   }  
24 }

As we can see, in this case the server itself becomes a client for some other service (database).

The last and most important part of the server is to intercept all HTTP requests, extract the Trace Id from them so it will be possible to associate more data with the trace (annotate the trace). In Apache CXF it's very easy to do by providing own invoker (ZipkinTracingInvoker.scala):

01 package com.example.zipkin.server
02  
03 import org.apache.cxf.jaxrs.JAXRSInvoker
04 import com.twitter.finagle.tracing.TraceId
05 import org.apache.cxf.message.Exchange
06 import com.twitter.finagle.tracing.Trace
07 import com.twitter.finagle.tracing.Annotation
08 import org.apache.cxf.jaxrs.model.OperationResourceInfo
09 import org.apache.cxf.jaxrs.ext.MessageContextImpl
10 import com.twitter.finagle.tracing.SpanId
11 import com.twitter.finagle.http.HttpTracing
12 import com.twitter.finagle.tracing.Flags
13 import scala.collection.JavaConversions._
14 import com.twitter.finagle.tracing.Tracer
15 import javax.inject.Inject
16  
17 class ZipkinTracingInvoker extends JAXRSInvoker {
18   @Inject val tracer: Tracer = null
19    
20   def trace[ R ]( exchange: Exchange )( block: => R ): R = {
21     val context = new MessageContextImpl( exchange.getInMessage() )
22     Trace.pushTracer( tracer )
23          
24     val id = Option( exchange.get( classOf[ OperationResourceInfo ] ) ) map { ori =>
25       context.getHttpHeaders().getRequestHeader( HttpTracing.Header.SpanId ).toList match {
26         case x :: xs => SpanId.fromString( x ) map { sid =>
27           val traceId = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.TraceId ).toList match {
28             case x :: xs => SpanId.fromString( x )
29             case _ => None
30           }
31            
32           val parentSpanId = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.ParentSpanId ).toList match {
33             case x :: xs => SpanId.fromString( x )
34             case _ => None
35           }
36    
37           val sampled = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.Sampled ).toList match {
38             case x :: xs =>  x.toBoolean
39             case _ => true
40           }
41                      
42           val flags = context.getHttpHeaders().getRequestHeader( HttpTracing.Header.Flags ).toList match {
43             case x :: xs =>  Flags( x.toLong )
44             case _ => Flags()
45           }
46           
47           val id = TraceId( traceId, parentSpanId, sid, Option( sampled ), flags )                    
48           Trace.setId( id )
49          
50           if( Trace.isActivelyTracing ) {
51             Trace.recordRpcname( context.getHttpServletRequest().getProtocol(), ori.getHttpMethod() )
52             Trace.record( Annotation.ServerRecv() )
53           }
54          
55           id
56         }          
57            
58         case _ => None
59       }
60     }
61      
62     val result = block
63      
64     if( Trace.isActivelyTracing ) {
65       id map { id => Trace.record( new Annotation.ServerSend() ) }
66     }
67      
68     result
69   }
70    
71   @Override
72   override def invoke( exchange: Exchange, parametersList: AnyRef ): AnyRef = {
73     trace( exchange )( super.invoke( exchange, parametersList ) )    
74   }
75 }

Basically, the only thing this code does is extracting Trace Id from request and associating it with the current thread. Also please notice that we associate additional data with the trace marking the server participation.

1 Trace.recordRpcname( context.getHttpServletRequest().getProtocol(), ori.getHttpMethod() )
2 Trace.record( Annotation.ServerRecv() )

To see the tracing in live, let's start our server (please notice that sbt should be installed), assuming all Zipkin components andApache Zookeeper are already up and running:

sbt 'project server' 'run-main com.example.server.ServerStarter'

then the client:

sbt 'project client' 'run-main com.example.client.ClientStarter'

and finally open Zipkin web UI at http://localhost:8080. We should see something like that (depending how many times you have run the client):

Alternatively, we can build and run fat JARs using sbt-assembly plugin:

sbt assembly
java -jar server/target/zipkin-jaxrs-2.0-server-assembly-0.0.1-SNAPSHOT.jar
java -jar client/target/zipkin-jaxrs-2.0-client-assembly-0.0.1-SNAPSHOT.jar

If we click on any particular trace, the more detailed information will be shown, much resembling client <-> server <-> databasechain.

Even more details are shown when we click on particular element in the tree.

Lastly, the bonus part is components / services dependency graph.

As we can see, all the data associated with the trace is here and follows hierarchical structure. The root and child traces are detected and shown, as well as timelines for client send/receive and server receive/send chains. Our example is quite naive and simple, but even like that it demonstrates how powerful and useful distributed system tracing is. Thanks to Zipkin guys.

The complete source code is available on GitHub.

Knowing how all your components work together: distributed tracing with Zipkin的更多相关文章

  1. Sentry 监控 - Distributed Tracing 分布式跟踪

    系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...

  2. Steeltoe之Distributed Tracing篇

    Steeltoe里的分布式追踪功能与Spring Cloud Sleuth一样,支持在日志中记录追踪数据,或者上传到远端的服务,比如Zipkin. Logging 在Steeltoe中使用日志时需要引 ...

  3. spring-cloud/spring-cloud-sleuth github 项目 mark

    97  Star639 Fork335 spring-cloud/spring-cloud-sleuth CodeIssues 5Pull requests 1Projects 0WikiInsigh ...

  4. Awesome Flask

    Awesome Flask  A curated list of awesome Flask resources and plugins Awesome Flask Framework Admin i ...

  5. Awesome Flask Awesome

    A curated list of awesome Flask resources and plugins Awesome Flask Framework Admin interface Authen ...

  6. Build Telemetry for Distributed Services之Open Telemetry简介

    官网链接:https://opentelemetry.io/about/ OpenTelemetry is the next major version of the OpenTracing and  ...

  7. Build Telemetry for Distributed Services之OpenTracing实践

    官网:https://opentracing.io/docs/best-practices/ Best Practices This page aims to illustrate common us ...

  8. Build Telemetry for Distributed Services之Open Telemetry来历

    官网:https://opentelemetry.io/ github:https://github.com/open-telemetry/ Effective observability requi ...

  9. Build Telemetry for Distributed Services之OpenTracing简介

    官网地址:https://opentracing.io/ What is Distributed Tracing? Who Uses Distributed Tracing? What is Open ...

随机推荐

  1. thinkphp 模型验证

    <?php class FormModel extends Model { // 自动验证设置 /* * 一:自动验证 自动验证的定义是这样的:array(field,rule,message, ...

  2. idea_pyspark 环境配置

    本文转载自:https://www.cnblogs.com/LazyJoJo/p/6910504.html 1.配置好Hadoop和spark 2.配置好Pytho3.5 3.安装py4j pip3 ...

  3. [Android] 开发第七天

    在另一台机器上安装 Android-Studio ,结果卡在了 Gradle 的下载界面上,网上各种方案都试了一遍,最终解决办法是: 然后新建了一个 App ,创建了新的签名并上传到手机上,安装时直接 ...

  4. python推荐书籍

    推荐的python电子书 python学习路线图 优先级 入门:python核心编程 提高:python cookbook 其他 (1).数据分析师 需要有深厚的数理统计基础,但是对程序开发能力不做要 ...

  5. Git----时光穿梭机之撤销修改05

    自然,你是不会犯错,不过现在是凌晨两点,你正在赶一份工作报告,你在readme.txt中添加了一行: $ cat readme.txtGit is a distributed version cont ...

  6. 基于jquery-ui及bootstrap的可拖拽模态框

    可直接使用代码 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <t ...

  7. 新手C#异常的学习2018.08.07

    异常是在程序执行期间出现的问题.C# 中的异常是对程序运行时出现的特殊情况的一种响应,比如尝试除以零. class Program { static void Main(string[] args) ...

  8. HDFS设计理念

    [HDFS设计理念] 1. 读取整个数据集的时间延迟比读取第一条记录的延迟更重要. 2. HDFS以高延迟为代价,要求低时间延迟数据访问的应用,不适合在HDFS上运行. 3. namenode决定了集 ...

  9. Kubernetes集群向指定节点上创建容器

    如果需要限制Pod到指定的Node上运行,则可以给Node打标签并给Pod配置NodeSelector. 给节点添加标签 首先查看节点信息 [root@k8s-master ~]# kubectl g ...

  10. 62. Unique Paths (Graph; DP)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...