最强GAN图像生成器,真假难辨

论文地址:

https://openreview.net/pdf?id=B1xsqj09Fm

更多样本地址:

https://drive.google.com/drive/folders/1lWC6XEPD0LT5KUnPXeve_kWeY-FxH002

第一篇就是这篇最佳BigGAN,DeepMind负责星际项目的Oriol Vinyals,说这篇论文带来了史上最佳的GAN生成图片,提升Inception Score 100分以上。

论文摘要:

尽管近期由于生成图像建模的研究进展,从复杂数据集例如 ImageNet 中生成高分辨率、多样性的样本仍然是很大的挑战。为此,研究者尝试在最大规模的数据集中训练生成对抗网络,并研究在这种规模的训练下的不稳定性。研究者发现应用垂直正则化(orthogonal regularization)到生成器可以使其服从简单的「截断技巧」(truncation trick),从而允许通过截断隐空间来精调样本保真度和多样性的权衡。这种修改方法可以让模型在类条件的图像合成中达到当前最佳性能。当在 128x128 分辨率的 ImageNet 上训练时,本文提出的模型—BigGAN—可以达到 166.3 的 Inception 分数(IS),以及 9.6 的 Frechet Inception 距离(FID),而之前的最佳 IS 和 FID 仅为 52.52 和 18.65。

BigGAN的生成器架构

生成样例,真是惟妙惟肖

LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS的更多相关文章

  1. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  2. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  3. [C12] 大规模机器学习(Large Scale Machine Learning)

    大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...

  4. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  5. 快速高分辨率图像的立体匹配方法Effective large scale stereo matching

    <Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...

  6. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  8. Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. 论文阅读笔记(五)【CVPR2012】:Large Scale Metric Learning from Equivalence Constraints

    由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric ...

随机推荐

  1. logstash使用分享

    1.logstash时间处理函数 当业务场景需要自有的time字段覆盖@timestamp字段的情况下 需要使用 date { match => ["time", " ...

  2. node.js + express 初体验【hello world】

    [node.js]  一个神奇的XX 呵呵 :) 不知道怎么形容他才好! [express] 是node.js 开发web应用程序的框架 开发环境:XP 大家共同进步吧 :) 一:前期准备: 1:下载 ...

  3. const 补充

    char const* ptr1const char * ptr2char * const ptr3 看到这三个const作何感想 其实const比较好理解的是const 后面整体是不能改变的(整体的 ...

  4. (转)powerdesigner 生成sql脚本使用的设置

    本文转载自:http://blog.163.com/lizhihaoo@126/blog/static/103121661201036171115/ 1. 生成sql脚本的时候,提示"con ...

  5. [转]命令行在IIS添加虚拟目录

    来自:http://www.jb51.net/softjc/29702.htmlMkwebdir -c LocalHost -w "Default Web Site" –v Com ...

  6. pyinstaller的使用方法 by 王大龙

    ---------------------------------------------------------------------------------------------------- ...

  7. oracle link的创建过程

    下面做一个测试,在测试中,创建数据库链接的库为XJ(WINDOWS 2003 ORACLE 10g 10.2.0.1),被链接的库为DMDB(LINUX AS5 ORACLE 10g 10.2.0.1 ...

  8. MySQL:Can't connect to mysql server 10038

    1.防火墙高级设置 2.入站规则,新建规则 3.选择端口 4.输入MySQL端口例如'3306' 5.允许连接 6.下一步 7.自定义规则名称和描述,完成之后重新连接即可.

  9. OpenMP 《并行程序设计导论》的补充代码

    ▶ 使用 OpenMP 和队列数据结构,在各线程之间传递信息 ● 代码,使用 critical 子句和 atomic 指令来进行读写保护 // queue.h #ifndef _QUEUE_H_ #d ...

  10. Matlab信号处理工具箱函数

    波形产生和绘图chirp 产生扫描频率余弦diric 产生Dirichlet函数或周期Sinc函数gauspuls 产生高斯调制正弦脉冲pulstran 产生脉冲串rectpuls 产生非周期矩形信号 ...