143. Long Live the Queen

time limit per test: 0.25 sec. 
memory limit per test: 4096 KB

The Queen of Byteland is very loved by her people. In order to show her their love, the Bytelanders have decided to conquer a new country which will be named according to the queen's name. This new country contains N towns. The towns are connected by bidirectional roads and there is exactly ONE path between any two towns, walking on the country's roads. For each town, the profit it brings to the owner is known. Although the Bytelanders love their queen very much, they don't want to conquer all the N towns for her. They will be satisfied with a non-empty subset of these towns, with the following 2 properties: there exists a path from every town in the subset to every other town in the subset walking only through towns in the subset and the profit of the subset is maximum. The profit of a subset of the N towns is equal to the sum of the profits of the towns which belong to the subset. Your task is to find the maximum profit the Bytelanders may get.

Input

The first line of input will contain the number of towns N (1<=N<=16 000). The second line will contain N integers: the profits for each town, from 1 to N. Each profit is an integer number between -1000 and1000. The next N-1 lines describe the roads: each line contains 2 integer numbers a and b, separated by blanks, denoting two different towns between which there exists a road.

Output

The output should contain one integer number: the maximum profit the Bytelanders may get.

Sample Input

5
-1 1 3 1 -1
4 1
1 3
1 2
4 5

Sample Output

4

题意:求一棵收益最大的树/子树,不能为空
思路:分别对每个节点维护以该节点为根所能得到的最大收益,更新答案即可
转移方程dp[i]=sum(dp[son[i]]>0?dp[son[i]]:0)
#include <cstdio>
#include <cstring>
#include<algorithm>
using namespace std;
const int maxn=16001;
const int maxm=32001;
int first[maxn],next[maxm],to[maxm],profit[maxn],len,n;
int sum[maxn];
void addedge(int f,int t){
next[len]=first[f];
first[f]=len;
to[len]=t;
swap(f,t);len++;
next[len]=first[f];
first[f]=len;
to[len]=t;
len++;
}
int dfs(int s,int f){
sum[s]=profit[s];
for(int p=first[s];p!=-1;p=next[p]){
int t=to[p];
if(t==f)continue;
int son=dfs(t,s);
if(son>0)sum[s]+=son;
}
return sum[s];
}
int main(){
scanf("%d",&n);
int tf,tt;
memset(first,-1,sizeof(first));
for(int i=1;i<=n;i++)scanf("%d",profit+i);
for(int i=1;i<n;i++){scanf("%d%d",&tf,&tt);addedge(tf,tt);}
dfs(1,-1);
int maxn=-0x7ffffff;
for(int i=1;i<=n;i++){maxn=max(maxn,sum[i]);}
printf("%d\n",maxn);
}

  

143. Long Live the Queen 树形dp 难度:0的更多相关文章

  1. Uva LA 3902 - Network 树形DP 难度: 0

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  2. UVa 10859 - Placing Lampposts 树形DP 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  3. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  4. HDU 4035 Maze 概率dp,树形dp 难度:2

    http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...

  5. POJ 2057 The Lost Home 树形dp 难度:2

    The Lost House Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 2203   Accepted: 906 Des ...

  6. ZOJ 3822 Domination 概率dp 难度:0

    Domination Time Limit: 8 Seconds      Memory Limit: 131072 KB      Special Judge Edward is the headm ...

  7. 快速切题 sgu104. Little shop of flowers DP 难度:0

    104. Little shop of flowers time limit per test: 0.25 sec. memory limit per test: 4096 KB PROBLEM Yo ...

  8. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. URAL 1203 Scientific Conference 简单dp 难度:0

    http://acm.timus.ru/problem.aspx?space=1&num=1203 按照结束时间为主,开始时间为辅排序,那么对于任意结束时间t,在此之前结束的任务都已经被处理, ...

随机推荐

  1. Spring、springmvc配置

    首先把三个文件copy到resources目录下: 然后把这两个文件copy到WEB-INF下: 在datasource.properties中增加: db.driverLocation=C:\\Us ...

  2. docker——Etcd高可用键值对数据库

    一.简介 Etcd按照官方介绍: Etcd is a distributed, consistent key-value store for shared configuration and serv ...

  3. 解决 failed to push some refs to 'git@github.com:zle1992/head-first-java' hint: Updates were rejected because the tip of your curr

    问题描述: 寒假之前用实验室电脑push到github 上head first java 的程序,寒假回家后,想用自己的笔记本继续编,继续push . 我先从github下载zip到本地,然后 解压后 ...

  4. IntelliJ idea的初次使用

    1. 首次使用Idea工具,需要安装.我安装的版本是14.0.2.安装包下载地址 http://pan.baidu.com/s/1gfFkrzt 2. 安装SVN. 3.配置JDK. 4.配置mave ...

  5. http://www.cvvision.cn/2888.html

    图像处理(一)图像变形(1)矩形全景图像还原-Siggraph 2014 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:cvvision链接:http://www.cvvi ...

  6. SNMP学习笔记之SNMPWALK 命令

    SNMPWALK是一个通过SNMP GET-NEXT类型PDU,实现对目标AGENT的某指定MIB分支信息进行完整提取输出的命令工作. 命令行: snmpwalk [选项] agent [oid] 选 ...

  7. P4099 [HEOI2013]SAO(树形dp)

    P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在 ...

  8. linux及安全第六周总结——20135227黄晓妍

    总结部分: 操作系统内核三大功能: 进程管理,内存管理,文件系统 最核心的是进程管理 为了管理,首先要对每一个进程进行描述.进程描述符提供了所有内核需要了解的信息. 进程控制模块:task_struc ...

  9. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  10. UOJ #122 【NOI2013】 树的计数

    题目链接:树的计数 这道题好神啊……正好有人讲了这道题,那么我就写掉吧…… 首先,为了方便考虑,我们可以把节点重标号,使得\(bfs\)序变成\(1,2,3,\dots,n\),那么显然树的深度就是\ ...