DeeplabV3+ 训练自己的遥感数据
一、预处理数据部分
1、创建 tfrecord(修改 deeplab\ dateasets\ build_data.py)
模型本身是把一张张 jpg 和 png 格式图片读到一个 Example 里,写入 tfrecord。但我是一个大的 tif 文件,需要把几万像素的图片分割成小块写入到一个 tfrecord 文件里,而 tf 没有对 tif 格式的图片的解码,因此不能直接使用原来的 build_data.py。
先用 osgeo 里的 gdal 读取 tif 文件,得到大 tif 的 np.array,再设置步长一块块读取,调用 tobytes() 转成二进制字符串,保存到 tfrecord 中,不过需要把图片 shape 都设置好,大小还有维度,这点有待改进。
最后的 tfrecord 里就只有两个数组:原图片和标签值
加入高度和宽度信息后会报错,不知道怎么 debug,只能从头到尾固定好大小 321 了
2、data_generator读数据(修改 deeplab\ dateasets\ data_generator.py)
加入自己的数据集,只需模仿它已经创建的数据就好,训练验证测试大小,以及忽略值等
解码时用 tf.decode_raw() 解码,不用再根据后缀判断调用哪个。
二、训练部分
1、训练(修改 deeplab\ train.py)
参数设置里需要指定自己的数据集 dataset
由于类别数不同,设置 initialize_last_layer=False,last_layers_contain_logits_only=True
crop_size缩小为321(由于内存不够,将其改小,但是crop_size至少要大于300,遵循的公式是(crop_size-1)/4为整数)
2、修改 deeplab\ utils\ train_utils.py
159 行改成 exclude_list = ['global_step','logits'],即把 logits 层加到不恢复的列表中,这样才能训练自己的数据,改类别数
训练的一些问题可以参考:https://github.com/tensorflow/models/issues/3730
logits is the last feature maps before softmax. logits 层是在 softmax 前的最后一层特征图,是没有经过归一化的预测值,如果面对分类问题再经过一层 softmax 就可以得到每类的概率
Maybe this can help you.
The vector of raw (non-normalized) predictions that a classification model generates, which is ordinarily then passed to a normalization function. If the model is solving a multi-class classification problem, logits typically become an input to the softmax function. The softmax function then generates a vector of (normalized) probabilities with one value for each possible class.
三、验证部分
1、验证(修改 deeplab\ eval.py)
eval.py 不会出现 miou 分数,在 summary 里加入一个 tf.Print 的 op,就可以显示了
四、可视化部分
1、可视化(修改 deeplab\ vis.py)
由于没有每个文件的文件名,需要把 vis.py 里有关文件名的地方做相应的修改,sample.HEIGHT,WIDTH 也没有要注释掉。_process_batch 的参数对应修改
需要在 get_dataset_colormap.py 中加入自己的数据集
2、可视化标签(再修改 deeplab\ vis.py)
原来的 vis 只可视化了图片和预测值,为了方便比较,把真值也显示,把 tfrecord 里的真值读出来就可以
3、可视化预测图像(修改 deeplab\ utils\ get_dataset_colormap.py)
加入自己的数据集,根据类别设置颜色个数
可视化真值时报错 label[255] 超出索引,把忽略值直接赋值为0解决
五、预测部分
1、修改deeplab\ datasets\ build_data_test.py
预测数据没有真值,需要重写一个 build_data
2、修改 deeplab\ input_preprocess.py
预测时 label 为 None,但原始影像还是要裁剪,去适配我的 data_generator,原始的不需要因为大小信息都在 tfrecord 里,会自动处理,我指定了大小
3、修改 deeplab\ datasets\ data_generator_test.py
不解析 label
参考:https://blog.csdn.net/weixin_38385446/article/details/82781109
DeeplabV3+ 训练自己的遥感数据的更多相关文章
- 通过整合遥感数据和社交媒体数据来进行城市土地利用的分类( Classifying urban land use by integrating remote sensing and social media data)DOI: 10.1080/13658816.2017.1324976 20.0204
Classifying urban land use by integrating remote sensing and social media data Xiaoping Liu, Jialv ...
- Aster及其它遥感数据下载地址
免费下载TM,ETM的网址,速度还行,本人下载过, http://glcfapp.umiacs.umd.edu 还有一个是下载其他数据的,也可以去看看免费下载·遥感数据http://daac.gsfc ...
- caffe简易上手指南(二)—— 训练我们自己的数据
训练我们自己的数据 本篇继续之前的教程,下面我们尝试使用别人定义好的网络,来训练我们自己的网络. 1.准备数据 首先很重要的一点,我们需要准备若干种不同类型的图片进行分类.这里我选择从ImageNet ...
- 利用 keras_proprecessing.image 扩增自己的遥感数据(多波段)
1.keras 自带的 keras_proprecessing.image 只支持三种模式图片(color_mode in ['grey', 'RGB', 'RGBA'])的随机扩增. 2.遥感数据除 ...
- 实践详细篇-Windows下使用Caffe训练自己的Caffemodel数据集并进行图像分类
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试.上手操作一边后大致了解了配置文件属性.这一篇记录如何使用自己准备的图片素材做图像分 ...
- python+caffe训练自己的图片数据流程
1. 准备自己的图片数据 选用部分的Caltech数据库作为训练和测试样本.Caltech是加州理工学院的图像数据库,包含Caltech101和Caltech256两个数据集.该数据集是由Fei-Fe ...
- 美国NOAA/AVHRR遥感数据
1.美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA) 美国国家海洋和大气管理局隶属于美国商业部下属的科技部门,主要关 ...
- 使用deeplabv3+训练自己数据集(迁移学习)
概述 在前边一篇文章,我们讲了如何复现论文代码,使用pascal voc 2012数据集进行训练和验证,具体内容可以参考<deeplab v3+在pascal_voc 2012数据集上进行训练& ...
- Caffe初试(三)使用caffe的cifar10网络模型训练自己的图片数据
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以 ...
随机推荐
- 用gogs轻松搭建个人的git服务器
因为公司和家里电脑里面有些项目需做版本控制或者说共享吧,就想搭个自己的git服务器:原本想用gitlab,不过我服务器配置比较差,查了一下,看到gogs,眼前一亮: Gogs 的目标是打造一个最简单. ...
- 【ASP.NET Core快速入门】(十六)MVC开发:DbContextSeed初始化
前言 由于我们现在每次EF实体模型变化的时候每次都是手动更改,我们想通过代码的方式让他自动更新,或者程序启动的时候添加一些数据进去 DbContextSeed初始化 首先,在Data文件夹下添加一个A ...
- AJAX应用【股票案例、验证码校验】
一.股票案例 我们要做的是股票的案例,它能够无刷新地更新股票的数据.当鼠标移动到具体的股票中,它会显示具体的信息. 我们首先来看一下要做出来的效果: 1.1服务器端分析 首先,从效果图我们可以看见很多 ...
- angr进阶(3) 添加约束
如果已知字符串长度或部分,可以使用如下的方式进行格式规范csaw_wyvern 1 flag_chars = [claripy.BVS('flag_%d' % i, 8) for i in range ...
- [七]JavaIO之 PipedInputStream 和 PipedInputStream
管道简介
- Java开发笔记(六十七)清单:ArrayList和LinkedList
前面介绍了集合与映射两类容器,它们的共同特点是每个元素都是唯一的,并且采用二叉树方式的类型还自带有序性.然而这两个特点也存在弊端:其一,为啥内部元素必须是唯一的呢?像手机店卖出了两部Mate20,虽然 ...
- 结合JDK源码看设计模式——简单工厂、工厂方法、抽象工厂
三种工厂模式的详解: 简单工厂模式: 适用场景:工厂类负责创建的对象较少,客户端只关心传入工厂类的参数,对于如何创建对象的逻辑不关心 缺点:如果要新加产品,就需要修改工厂类的判断逻辑,违背软件设计中的 ...
- Spring Cloud Alibaba Nacos 入门
概览 阿里巴巴在2018年7月份发布Nacos, Nacos是一个更易于构建云原生应用的动态服务发现.配置管理和服务管理平台.并表示在6-8个月完成到生产可用的0.8版本,目前版本是0.9版本. Na ...
- Belgrade Azure 2019-2-11活动感悟
这是<国外线下技术俱乐部建设>系列文章之一. 活动网址:https://www.meetup.com/Azure-UG-Srbija/events/258673179/ 活动内容:Az ...
- DevOps 工程师实际上是做什么的
DevOps 工程师实际上是做什么的? 我们之前已经讨论过许多关于DevOps和DevOps世界的最新趋势了.但是DevOps工程师到底是做什么的? DevOps工程师以最纯粹的方式弥合了软件开发和运 ...