P2757 [国家集训队]等差子序列

题目传送门

推荐一篇好题解

此题要求我们在一个序列中找出一个等差子序列。

显然,我们只需要考虑子序列长度len=3的情况,因为在长度为4的子序列中必定有一个长度为3的子序列。

问题就变成了:在序列找到三个数,满足a[j]-a[i]=a[k]-a[j]且i<j<k

移项,a[i]+a[k]=2 × a[j]

O(\(n^2\))的做法肯定是十分好想的。

枚举j和a[i],查看vis[a[k]]是否为true即可。

这时观察数据,发现a[i]∈[1,n],所以这时我们想到用hash来记录a[i]是否在之前出现过。

并且用线段树动态维护hash值(听说可以用树状数组,但是没写出来)

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=200005;
ll read(){
ll x=0;char c=getchar();
while(c<'0'||c>'9')c=getchar();
while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
return x;
}
const ll mo=19280817;
ll hash1[N<<2],hash2[N<<2];
ll n,pw[N];
void up(ll root,ll l,ll r,ll x){
if(l==r&&l==x){hash1[root]=hash2[root]=1;return;}
if(l>x||r<x)return;
ll mid=l+r>>1;
up(root<<1,l,mid,x);
up(root<<1|1,mid+1,r,x);
hash1[root]=(hash1[root<<1]*pw[r-mid]%mo+hash1[root<<1|1])%mo;
hash2[root]=(hash2[root<<1]%mo+hash2[root<<1|1]*pw[mid-l+1])%mo;
}
ll Q1(ll root,ll l,ll r,ll beg,ll end){
if(l>end||r<beg)return 0;
if(l>=beg&&r<=end)return hash1[root];
ll mid=l+r>>1,ans=0;
if(mid<beg)return Q1(root<<1|1,mid+1,r,beg,end);
if(mid+1>end)return Q1(root<<1,l,mid,beg,end);
ans=Q1(root<<1,l,mid,beg,end)*pw[min(end,r)-mid]%mo;
ans=(ans+Q1(root<<1|1,mid+1,r,beg,end))%mo;
return ans;
}
ll Q2(ll root,ll l,ll r,ll beg,ll end){
if(l>end||r<beg)return 0;
if(l>=beg&&r<=end)return hash2[root];
ll mid=l+r>>1,ans=0;
if(mid<beg)return Q2(root<<1|1,mid+1,r,beg,end);
if(mid+1>end)return Q2(root<<1,l,mid,beg,end);
ans=Q2(root<<1|1,mid+1,r,beg,end)*pw[mid-max(beg,l)+1]%mo;
ans=(ans+Q2(root<<1,l,mid,beg,end))%mo;
return ans;
}
int main(){
int T=read();pw[0]=1;for(ll i=1;i<=10000;++i)pw[i]=(pw[i-1]*2)%mo;
while(T--){
memset(hash1,0,sizeof(hash1));
memset(hash2,0,sizeof(hash2));
n=read();bool flag=1;
for(ll i=1;i<=n;++i){
ll x=read();
if(!flag)continue;
ll len=min(x-1,n-x);
if((Q1(1,1,n,x-len,x-1)+mo)%mo!=(Q2(1,1,n,x+1,x+len)+mo)%mo){flag=0;continue;}
up(1,1,n,x);
}
if(flag)puts("N");else puts("Y");
}
return 0;
}

P2757 [国家集训队]等差子序列的更多相关文章

  1. luogu P2757 [国家集训队]等差子序列

    题目链接 luogu P2757 [国家集训队]等差子序列 题解 线段树好题 我选择暴力 代码 // luogu-judger-enable-o2 #include<cstdio> inl ...

  2. 洛谷 P2757 [国家集训队]等差子序列 解题报告

    P2757 [国家集训队]等差子序列 题目描述 给一个\(1\)到\(N\)的排列\(\{A_i\}\),询问是否存在 \[1 \le p_1<p_2<p_3<p_4<p_5& ...

  3. 1893. [国家集训队2011]等差子序列(bitset)

    ★★   输入文件:nt2011_sequence.in   输出文件:nt2011_sequence.out   简单对比时间限制:0.3 s   内存限制:512 MB [试题来源] 2011中国 ...

  4. [国家集训队2012]middle

    http://cogs.pro:8080/cogs/problem/problem.php?pid=1763 二分答案x 把区间内>=x的数设为1,<x的数设为-1 左端点在[a,b]之间 ...

  5. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  7. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7676  Solved: 3509[Subm ...

  8. [转] ACM中国国家集训队论文集目录(1999-2009)

    国家集训队1999论文集 陈宏:<数据结构的选择与算法效率——从IOI98试题PICTURE谈起>来煜坤:<把握本质,灵活运用——动态规划的深入探讨>齐鑫:<搜索方法中的 ...

  9. BZOJ 2124: 等差子序列

    Sol 线段树+Hash. 首先暴力 等差子序列至少3项就可以了,就枚举中项,枚举公差就可以了,只需要一个数在中项前出现,另一个数在中项前没出现过就可以了.复杂度 \(O(n^2)\) 然后我想了一个 ...

随机推荐

  1. Laravel-任务调度

    简介Cron 是 UNIX.SOLARIS.LINUX 下的一个十分有用的工具,通过 Cron 脚本能使计划任务定期地在系统后台自动运行.这种计划任务在 UNIX.SOLARIS.LINUX下术语为 ...

  2. Linux(Ubuntu)使用日记------trash-cli防止误删文件

    1.安装过程 cd /tmp git clone https://github.com/andreafrancia/trash-cli cd trash-cli sudo python setup.p ...

  3. Adding appsettings.json to a .NET Core console app

    This is something that strangely doesn’t seem to be that well documented and took me a while to figu ...

  4. nginx 详细配置

    Nginx全局变量 Nginx中有很多的全局变量,可以通过$变量名来使用.下面列举一些常用的全局变量: 变量 说明 boxClass 需要执行动画的元素的 变量 说明 $args 请求中的参数,如ww ...

  5. codeforces850E Random Elections

    题目链接:codeforces 850E 翻译:luogu 读题是第一要务(大选这么随便真的好吗) 其实答案问你的就是在所有选民心中支持的人的所有情况中,能让一个人连赢两场的情况数是多少 我们假设\( ...

  6. CSS3常用的循环动画

    定义动画 @keyframes rotatefresh { from { transform: rotate(0deg) } to { transform: rotate(360deg); trans ...

  7. "大概能给你的磕盐增加一点幸福感✈"-[那些年的矫情]

    #--------------------------------------------------------------------------------------------------- ...

  8. JavaScript手工编写滚动条组件

    0 前言 上周的一个练习,由于没来得及编写笔记,这里补充一下~ 虽然CSS3中提供了overflow:scroll; 来实现滚动条,但是这里可以使用原生JS来编写一个,以达到练习组件编写的效果. 练习 ...

  9. 蓝书例题之UVa 10253 Series-Parallel Networks

    挺有趣的一道题 首先转化模型,思路参考蓝书,可得出等同于求共n个叶子,且每个非叶结点至少有两个子结点的无标号树的个数的二倍,设个数为\(f[n]\) 考虑怎么求\(f[n]\),假设有一个\(n\)的 ...

  10. Day042---浮动 背景图设置 相对定位绝对定位

    1.练习浮动 2.文本属性和字体属性 文本对齐 ​ text-align left 左对齐 right 右对齐 center 中心对齐 justify 两边对齐 只适应于英文 text-indent ...